[tex]\begin{aligned}&\frac{\cos95^\circ+\cos25^\circ}{\sin95^\circ+\sin25^\circ}=\boxed{\,\bf\frac{1}{3}\sqrt{3}\,}\end{aligned}[/tex]
Trigonometri
Kita akan menentukan nilai dari
[tex]\dfrac{\cos95^\circ+\cos25^\circ}{\sin95^\circ+\sin25^\circ}[/tex]
Perhatikan identitas trigonometri berikut ini.
[tex]\begin{aligned}&\bullet\ \cos\alpha+\cos\beta\\&\quad=2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)\\&\bullet\ \sin\alpha+\sin\beta\\&\quad=2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)\\\end{aligned}[/tex]
Maka:
[tex]\begin{aligned}&\frac{\cos\alpha+\cos\beta}{\sin\alpha+\sin\beta}\\&=\frac{\cancel{2}\cos\left(\dfrac{\alpha+\beta}{2}\right)\cancel{\cos\left(\dfrac{\alpha-\beta}{2}\right)}}{\cancel{2}\sin\left(\dfrac{\alpha+\beta}{2}\right)\cancel{\cos\left(\dfrac{\alpha-\beta}{2}\right)}}\\&=\frac{\cos\left(\dfrac{\alpha+\beta}{2}\right)}{\sin\left(\dfrac{\alpha+\beta}{2}\right)}\,=\,\cot\left(\frac{\alpha+\beta}{2}\right)\end{aligned}[/tex]
Oleh karena itu:
[tex]\begin{aligned}&\frac{\cos95^\circ+\cos25^\circ}{\sin95^\circ+\sin25^\circ}\\&=\cot\left(\frac{95^\circ+25^\circ}{2}\right)\\&=\cot\left(\frac{120^\circ}{2}\right)=\cot\left(60^\circ\right)\\&=\boxed{\,\bf\frac{1}{3}\sqrt{3}\,}\end{aligned}[/tex]
Atau, jika tidak ingat nilai cot(60°), bisa kita selesaikan dengan cos(60°) / sin(60°).[tex]\blacksquare[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
[tex]\begin{aligned}&\frac{\cos95^\circ+\cos25^\circ}{\sin95^\circ+\sin25^\circ}=\boxed{\,\bf\frac{1}{3}\sqrt{3}\,}\end{aligned}[/tex]
Penjelasan dengan langkah-langkah:
Trigonometri
Kita akan menentukan nilai dari
[tex]\dfrac{\cos95^\circ+\cos25^\circ}{\sin95^\circ+\sin25^\circ}[/tex]
Perhatikan identitas trigonometri berikut ini.
[tex]\begin{aligned}&\bullet\ \cos\alpha+\cos\beta\\&\quad=2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)\\&\bullet\ \sin\alpha+\sin\beta\\&\quad=2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)\\\end{aligned}[/tex]
Maka:
[tex]\begin{aligned}&\frac{\cos\alpha+\cos\beta}{\sin\alpha+\sin\beta}\\&=\frac{\cancel{2}\cos\left(\dfrac{\alpha+\beta}{2}\right)\cancel{\cos\left(\dfrac{\alpha-\beta}{2}\right)}}{\cancel{2}\sin\left(\dfrac{\alpha+\beta}{2}\right)\cancel{\cos\left(\dfrac{\alpha-\beta}{2}\right)}}\\&=\frac{\cos\left(\dfrac{\alpha+\beta}{2}\right)}{\sin\left(\dfrac{\alpha+\beta}{2}\right)}\,=\,\cot\left(\frac{\alpha+\beta}{2}\right)\end{aligned}[/tex]
Oleh karena itu:
[tex]\begin{aligned}&\frac{\cos95^\circ+\cos25^\circ}{\sin95^\circ+\sin25^\circ}\\&=\cot\left(\frac{95^\circ+25^\circ}{2}\right)\\&=\cot\left(\frac{120^\circ}{2}\right)=\cot\left(60^\circ\right)\\&=\boxed{\,\bf\frac{1}{3}\sqrt{3}\,}\end{aligned}[/tex]
Atau, jika tidak ingat nilai cot(60°), bisa kita selesaikan dengan cos(60°) / sin(60°).
[tex]\blacksquare[/tex]