ALjabar
__
p'(x) = q'(x)
2x² - x - 6 = x² - 4
x² - x - 2 = 0
(x + 1)(x - 2) = 0
x = -1 atau x = 2
Nilai (x - 1)² :
(x - 1)² = (-1 - 1)² = 4
atau
(x - 1)² = (2 - 1)² = 1
[tex]\sf p(x) =\frac{2}{3} x^{3} -\frac{1}{2} x^{2} -6x+989\\\\q(x)=\frac{1}{3} x^{3} -4x+787[/tex]
[tex]\sf p'(x)=q'(x)\\\\3\cdot \frac{2}{3} x^{2} -2\cdot \frac{1}{2} x-6=3\cdot \frac{1}{3}x^{2} -4\\ \\2x^{2} -x-6=x^{2} -4\\\\2x^{2} -x^{2} -x-6+4=0\\\\x^{2} -x-2=0\\\\(x-2)(x+1)=0\\\\x=2\:\:\:atau\:\:\:x=-1[/tex]
Untuk x = 2
[tex]\sf (x-1)^{2} =(2-1)^{2} =1^{2} =1[/tex]
Untuk x = -1
[tex]\sf (x-1)^{2} =(-1-1)^{2} =(-2)^{2} =4[/tex]
Jadi, himpunan penyelesaian dari (x - 1)² adalah {1, 4}.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
ALjabar
__
p'(x) = q'(x)
2x² - x - 6 = x² - 4
x² - x - 2 = 0
(x + 1)(x - 2) = 0
x = -1 atau x = 2
Nilai (x - 1)² :
(x - 1)² = (-1 - 1)² = 4
atau
(x - 1)² = (2 - 1)² = 1
Verified answer
Diferensial
[tex]\sf p(x) =\frac{2}{3} x^{3} -\frac{1}{2} x^{2} -6x+989\\\\q(x)=\frac{1}{3} x^{3} -4x+787[/tex]
[tex]\sf p'(x)=q'(x)\\\\3\cdot \frac{2}{3} x^{2} -2\cdot \frac{1}{2} x-6=3\cdot \frac{1}{3}x^{2} -4\\ \\2x^{2} -x-6=x^{2} -4\\\\2x^{2} -x^{2} -x-6+4=0\\\\x^{2} -x-2=0\\\\(x-2)(x+1)=0\\\\x=2\:\:\:atau\:\:\:x=-1[/tex]
Untuk x = 2
[tex]\sf (x-1)^{2} =(2-1)^{2} =1^{2} =1[/tex]
Untuk x = -1
[tex]\sf (x-1)^{2} =(-1-1)^{2} =(-2)^{2} =4[/tex]
Jadi, himpunan penyelesaian dari (x - 1)² adalah {1, 4}.