TUrunan
y = 4x² → y' = 8x
y = (cos 45°)^x
y' = (cos 45°)^x . 1 . ln (cos 45°)
y' = ((1/2 √2)^x) ln (1/√2)
y = x^(x²)
ln y = x² ln x
y' . 1/y = 2x ln x + x² . 1/x
y' . 1/y = 2x ln x + x
y' = 2xy lx x + xy
y' = y(x + 2x ln x)
y' = (x^(x²))(x + 2x ln x)
d(4x² - 2x^(x²) + (cos 45°)^x) / dx
= 8x - 2 (x^(x²))(x + 2x ln x) + ((1/2 √2)^x) ln (1/√2)
= 8x - x[x^(x²)][2 + 4 ln x] - 1/2 ((1/2 √2)^x) ln 2
Penjelasan dengan langkah-langkah:
Cos 45° = [tex]\tt \frac{1}{2}\sqrt{2}[/tex]
[tex]\tt \frac{d}{dx}(4x^2-2x^{x^2}+cos(45^o)^x)\\\\= \frac{d}{dx}(4x^2-2x^{x^2}+(\frac{1}{2}\sqrt{2})^x)\\\\=\frac{d}{dx}(4x^2-2x^{x^2}+\frac{(2^\frac{1}{2})^x}{2^x} )\\ \\ =\frac{d}{dx}(4x^2-2x^{x^2}+2^{\frac{1}{2}x-x}) \to gunakan~teorema~turunan:\frac{d}{dx}(a\times f)=a\times \frac{d}{dx}(f) \\\\=2(4x)- 2(\frac{d}{dx}(x^{x^2}))+\frac{d}{dx}(2^{-\frac{1}{2}x})\to gunakan~logaritma~natural:e^{ln~x}=x[/tex]
[tex]\tt = 8x-2(\frac{d}{dx}((e^{ln(x)})^{(x^2)}))+ln(2)(2^{-\frac{1}{2}x})(-\frac{1}{2})\\\\= 8x-2(\frac{d}{dx}(e^{ln(x)(x^2)}))+ln(2)(2^{-\frac{1}{2}x})(-\frac{1}{2})[/tex]
[tex]\tt =8x-2e^{ln(x)(x^2)}(\frac{1}{x}x^2+ln(x)(2x))+ln(2)(2^{-\frac{1}{2}x})(-\frac{1}{2})\\\\=8x-2e^{ln(x^{(x^2)})}(x+2x(ln(x)))-ln(2)(2^{-\frac{1}{2}x-1})[/tex]
[tex]\tt =8x-2x^{x^2+1}-4x^{x^2+1}ln(x)-ln(2)(2^{-\frac{1}{2}x-1})[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
TUrunan
y = 4x² → y' = 8x
y = (cos 45°)^x
y' = (cos 45°)^x . 1 . ln (cos 45°)
y' = ((1/2 √2)^x) ln (1/√2)
y = x^(x²)
ln y = x² ln x
y' . 1/y = 2x ln x + x² . 1/x
y' . 1/y = 2x ln x + x
y' = 2xy lx x + xy
y' = y(x + 2x ln x)
y' = (x^(x²))(x + 2x ln x)
d(4x² - 2x^(x²) + (cos 45°)^x) / dx
= 8x - 2 (x^(x²))(x + 2x ln x) + ((1/2 √2)^x) ln (1/√2)
= 8x - x[x^(x²)][2 + 4 ln x] - 1/2 ((1/2 √2)^x) ln 2
Verified answer
Penjelasan dengan langkah-langkah:
Cos 45° = [tex]\tt \frac{1}{2}\sqrt{2}[/tex]
[tex]\tt \frac{d}{dx}(4x^2-2x^{x^2}+cos(45^o)^x)\\\\= \frac{d}{dx}(4x^2-2x^{x^2}+(\frac{1}{2}\sqrt{2})^x)\\\\=\frac{d}{dx}(4x^2-2x^{x^2}+\frac{(2^\frac{1}{2})^x}{2^x} )\\ \\ =\frac{d}{dx}(4x^2-2x^{x^2}+2^{\frac{1}{2}x-x}) \to gunakan~teorema~turunan:\frac{d}{dx}(a\times f)=a\times \frac{d}{dx}(f) \\\\=2(4x)- 2(\frac{d}{dx}(x^{x^2}))+\frac{d}{dx}(2^{-\frac{1}{2}x})\to gunakan~logaritma~natural:e^{ln~x}=x[/tex]
[tex]\tt = 8x-2(\frac{d}{dx}((e^{ln(x)})^{(x^2)}))+ln(2)(2^{-\frac{1}{2}x})(-\frac{1}{2})\\\\= 8x-2(\frac{d}{dx}(e^{ln(x)(x^2)}))+ln(2)(2^{-\frac{1}{2}x})(-\frac{1}{2})[/tex]
[tex]\tt =8x-2e^{ln(x)(x^2)}(\frac{1}{x}x^2+ln(x)(2x))+ln(2)(2^{-\frac{1}{2}x})(-\frac{1}{2})\\\\=8x-2e^{ln(x^{(x^2)})}(x+2x(ln(x)))-ln(2)(2^{-\frac{1}{2}x-1})[/tex]
[tex]\tt =8x-2x^{x^2+1}-4x^{x^2+1}ln(x)-ln(2)(2^{-\frac{1}{2}x-1})[/tex]