Penjelasan dengan langkah-langkah:
[tex]cos( - \frac{1}{6} \pi)[/tex]
[tex]cos( - \frac{\pi}{6})[/tex]
[tex]cos( - \frac{\pi}{6} )[/tex]
[tex] \frac{ \sqrt{3} }{2} [/tex]
semoga bermanfaat
Jawaban:
[tex] \frac{1}{2} \sqrt{3} [/tex]
[tex]\begin{aligned} \cos(- \frac{1}{6}π) & =\cos(\frac{1}{6} \pi) \\ &= \cos(\frac{ \pi}{6}) \\ &= \cos(30 \degree) \\&= \bf \frac{1}{2} \sqrt{3} \end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
[tex]cos( - \frac{1}{6} \pi)[/tex]
[tex]cos( - \frac{\pi}{6})[/tex]
[tex]cos( - \frac{\pi}{6} )[/tex]
[tex] \frac{ \sqrt{3} }{2} [/tex]
semoga bermanfaat
Verified answer
Jawaban:
[tex] \frac{1}{2} \sqrt{3} [/tex]
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned} \cos(- \frac{1}{6}π) & =\cos(\frac{1}{6} \pi) \\ &= \cos(\frac{ \pi}{6}) \\ &= \cos(30 \degree) \\&= \bf \frac{1}{2} \sqrt{3} \end{aligned}[/tex]