Odpowiedź:
[tex]\Large\boxed{\lim\limits_{n\to\infty}\sqrt[n]{n^4+4^n+2^{3n+1}}=8}[/tex]
Szczegółowe wyjaśnienie:
[tex]\lim\limits_{n\to\infty}\sqrt[n]{n^4+4^n+2^{3n+1}}=\\[10px]\lim\limits_{n\to\infty}\sqrt[n]{n^4+4^n+2\cdot 2^{3n}}=\\[10px]\lim\limits_{n\to\infty}\sqrt[n]{n^4+4^n+2\cdot 8^n}=\\[10px]\lim\limits_{n\to\infty}\sqrt[n]{8^n\cdot\left(\dfrac{n^4}{8^n}+\left(\dfrac{4}{8}\right)^n+2\right)}=\\[10px]8\cdot\lim\limits_{n\to\infty}\sqrt[n]{\dfrac{n^4}{8^n}+\left(\dfrac{1}{2}\right)^n+2}=\\[10px]8\cdot\lim\limits_{n\to\infty}\sqrt[n]{0+0+2}=8\cdot 1=8[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\Large\boxed{\lim\limits_{n\to\infty}\sqrt[n]{n^4+4^n+2^{3n+1}}=8}[/tex]
Szczegółowe wyjaśnienie:
[tex]\lim\limits_{n\to\infty}\sqrt[n]{n^4+4^n+2^{3n+1}}=\\[10px]\lim\limits_{n\to\infty}\sqrt[n]{n^4+4^n+2\cdot 2^{3n}}=\\[10px]\lim\limits_{n\to\infty}\sqrt[n]{n^4+4^n+2\cdot 8^n}=\\[10px]\lim\limits_{n\to\infty}\sqrt[n]{8^n\cdot\left(\dfrac{n^4}{8^n}+\left(\dfrac{4}{8}\right)^n+2\right)}=\\[10px]8\cdot\lim\limits_{n\to\infty}\sqrt[n]{\dfrac{n^4}{8^n}+\left(\dfrac{1}{2}\right)^n+2}=\\[10px]8\cdot\lim\limits_{n\to\infty}\sqrt[n]{0+0+2}=8\cdot 1=8[/tex]