Odpowiedź:
a)
[tex]\displaystyle f(x)=\frac{1}{2} x^{2} -x+\frac{1}{2} =\frac{1}{2}(x^{2} -2x+1)=\frac{1}{2} (x-1)^2\\ Zw= < 0,+\infty)\\f(x)=x^{2} +4x-3=(x+2)^2-4-3=(x+2)^2-7\\Zw= < -7,+\infty)\\f(x)=2x^{2} -3x+1\\\Delta=9-8=1\\q=\frac{-\Delta}{4a} =-\frac{1}{8} \\Zw= < -\frac{1}{8} ,+\infty)\\f(x)=-3x^{2} +5x+4\\\Delta=25+12*4=73\\q=\frac{-73}{-12} =\frac{73}{12} =6\frac{1}{12} \\Zw=(-\infty,\frac{73}{12} >[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a)
[tex]\displaystyle f(x)=\frac{1}{2} x^{2} -x+\frac{1}{2} =\frac{1}{2}(x^{2} -2x+1)=\frac{1}{2} (x-1)^2\\ Zw= < 0,+\infty)\\f(x)=x^{2} +4x-3=(x+2)^2-4-3=(x+2)^2-7\\Zw= < -7,+\infty)\\f(x)=2x^{2} -3x+1\\\Delta=9-8=1\\q=\frac{-\Delta}{4a} =-\frac{1}{8} \\Zw= < -\frac{1}{8} ,+\infty)\\f(x)=-3x^{2} +5x+4\\\Delta=25+12*4=73\\q=\frac{-73}{-12} =\frac{73}{12} =6\frac{1}{12} \\Zw=(-\infty,\frac{73}{12} >[/tex]