Trigonometri
sin (π/2 - x) = cos x
sin 2x = 2 sin x cos x
__
π/14 = a
sin (3π/7) = sin (π/2 - 4π/14) = cos (4π/14)
sin (5π/7) = sin (π/2 - 2π/14) = cos (2π/14)
sin (π/14) sin (3π/4) sin (5π/14)
= sin (π/14) cos (4π/14) cos (2π/14)
= sin a cos 2a cos 4a
= sin 2a cos 2a cos 4a / (2 cos a)
= sin 4a cos 4a / (4 cos a)
= sin 8a / (8 sin (7a + a))
= 1/8
•
sin (7π/14) = 1
sin (9π/14) = sin (π - 5π/14) = sin (5π/14)
sin (11π/14) = sin (3π/14)
sin (13π/14) = sin (π/14)
[tex]\displaystyle \sin \frac{\pi}{14}\sin \frac{3\pi}{14}\sin \frac{5\pi}{14}\sin \frac{7\pi}{14}\sin \frac{9\pi}{14}\sin \frac{11\pi}{14}\sin \frac{13\pi}{14} \\ \\ = \: {(\displaystyle \sin \frac{\pi}{14}\sin \frac{3\pi}{14}\sin \frac{5\pi}{14})}^{2} \\ \\ = \: {( \frac{1}{8}) }^{2} \: = \: \frac{1}{64} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Trigonometri
sin (π/2 - x) = cos x
sin 2x = 2 sin x cos x
__
π/14 = a
sin (3π/7) = sin (π/2 - 4π/14) = cos (4π/14)
sin (5π/7) = sin (π/2 - 2π/14) = cos (2π/14)
sin (π/14) sin (3π/4) sin (5π/14)
= sin (π/14) cos (4π/14) cos (2π/14)
= sin a cos 2a cos 4a
= sin 2a cos 2a cos 4a / (2 cos a)
= sin 4a cos 4a / (4 cos a)
= sin 8a / (8 sin (7a + a))
= 1/8
•
sin (7π/14) = 1
sin (9π/14) = sin (π - 5π/14) = sin (5π/14)
sin (11π/14) = sin (3π/14)
sin (13π/14) = sin (π/14)
•
[tex]\displaystyle \sin \frac{\pi}{14}\sin \frac{3\pi}{14}\sin \frac{5\pi}{14}\sin \frac{7\pi}{14}\sin \frac{9\pi}{14}\sin \frac{11\pi}{14}\sin \frac{13\pi}{14} \\ \\ = \: {(\displaystyle \sin \frac{\pi}{14}\sin \frac{3\pi}{14}\sin \frac{5\pi}{14})}^{2} \\ \\ = \: {( \frac{1}{8}) }^{2} \: = \: \frac{1}{64} [/tex]