Trigonometri
sin 2x = 2 sin x cos x
__
a = π/7
π = 7a
•
[tex]\cos \frac{\pi}{7}\cos \frac{2\pi}{7}\cos \frac{3\pi}{7} \\ \\ = \sf{cos \: a \: cos \: 2a \:cos \: 3a} \\ \\ = \sf{ \frac{ - 2 \: sin \: a}{2 \: sin \: a} \times \: cos \: a \: cos \: 2a \: cos \: (7a - 3a) } \\ \\ = \sf{ \frac{ -sin \: 2a \: cos \: 2a \: cos \: 4a }{2 \: sin \: a} } \\ \\ = \sf{ \frac{ -sin \:4a \: cos \: 4a }{ - 4 \: sin \: (7a + a)} } \\ \\ = \sf{ \frac{sin \: 8a}{8 \: sin \: 8a} } \\ \\ = \: \frac{1}{8} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Trigonometri
sin 2x = 2 sin x cos x
__
a = π/7
π = 7a
•
[tex]\cos \frac{\pi}{7}\cos \frac{2\pi}{7}\cos \frac{3\pi}{7} \\ \\ = \sf{cos \: a \: cos \: 2a \:cos \: 3a} \\ \\ = \sf{ \frac{ - 2 \: sin \: a}{2 \: sin \: a} \times \: cos \: a \: cos \: 2a \: cos \: (7a - 3a) } \\ \\ = \sf{ \frac{ -sin \: 2a \: cos \: 2a \: cos \: 4a }{2 \: sin \: a} } \\ \\ = \sf{ \frac{ -sin \:4a \: cos \: 4a }{ - 4 \: sin \: (7a + a)} } \\ \\ = \sf{ \frac{sin \: 8a}{8 \: sin \: 8a} } \\ \\ = \: \frac{1}{8} [/tex]