Penjelasan dengan langkah-langkah:
[tex]\large\text{$\begin{aligned}\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}}\:=\:x^{\sqrt{x}}\end{aligned}$} \\ \sqrt[16]{ {x}^{15} } = {x}^{ {x}^{ \frac{1}{2} } } \\ {x}^{ \frac{15}{16} } = {x}^{ {x}^{ \frac{1}{2} } } \\ \frac{15}{16} = {x}^{ \frac{1}{2} } \\ ( \frac{15}{16} {)}^{2} = x \\ x = \frac{225}{256} [/tex]
15/16 Log x = √x Log x
x = 1
HP = {225/256 , 1}
Aljabar
__
[tex]\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}}\:=\:x^{\sqrt{x}} \\ \\ {x}^{ \frac{1}{2} ( \frac{1}{2} ( \frac{3}{2} \times \frac{1}{2} + 1) + 1)} \: = \: {x}^{ \sqrt{x} } \\ \\ {x}^{ \frac{15}{16} } \: = \: {x}^{ \sqrt{x} } \\ \\ [/tex]
x^(15/16) = x^√x
15/16 log x = √x log x
√x = 15/16 atau x = 1 (log 1 = 0)
x = (15/16)²
x = 225/256
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
[tex]\large\text{$\begin{aligned}\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}}\:=\:x^{\sqrt{x}}\end{aligned}$} \\ \sqrt[16]{ {x}^{15} } = {x}^{ {x}^{ \frac{1}{2} } } \\ {x}^{ \frac{15}{16} } = {x}^{ {x}^{ \frac{1}{2} } } \\ \frac{15}{16} = {x}^{ \frac{1}{2} } \\ ( \frac{15}{16} {)}^{2} = x \\ x = \frac{225}{256} [/tex]
15/16 Log x = √x Log x
x = 1
HP = {225/256 , 1}
Verified answer
Aljabar
__
[tex]\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}}\:=\:x^{\sqrt{x}} \\ \\ {x}^{ \frac{1}{2} ( \frac{1}{2} ( \frac{3}{2} \times \frac{1}{2} + 1) + 1)} \: = \: {x}^{ \sqrt{x} } \\ \\ {x}^{ \frac{15}{16} } \: = \: {x}^{ \sqrt{x} } \\ \\ [/tex]
x^(15/16) = x^√x
15/16 log x = √x log x
√x = 15/16 atau x = 1 (log 1 = 0)
x = (15/16)²
x = 225/256
HP = {225/256 , 1}