rozwiązanie w załączniku:)
[tex]\frac{2x(x-1)}{2} = 2x(\frac{x}{3} +1)-2\\\frac{2x(x-1)}{2} = \frac{2x^{2}}{3} + 2x - 2\\6x(x-1) = 4x^{2} + 12x - 12\\6x^{2} - 6x - 4x^{2} - 12x + 12 = 0\\2x^{2} - 18x + 12 = 0\\x^{2} - 9x + 6 = 0\\delta = 81 - 4 * 6 * 1 = 81 - 24=57\\\sqrt{delta}=\sqrt{57} \\x_{1} = \frac{9 + \sqrt{57}}{2} \\x_{2} = \frac{9 - \sqrt{57}}{2}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
rozwiązanie w załączniku:)
[tex]\frac{2x(x-1)}{2} = 2x(\frac{x}{3} +1)-2\\\frac{2x(x-1)}{2} = \frac{2x^{2}}{3} + 2x - 2\\6x(x-1) = 4x^{2} + 12x - 12\\6x^{2} - 6x - 4x^{2} - 12x + 12 = 0\\2x^{2} - 18x + 12 = 0\\x^{2} - 9x + 6 = 0\\delta = 81 - 4 * 6 * 1 = 81 - 24=57\\\sqrt{delta}=\sqrt{57} \\x_{1} = \frac{9 + \sqrt{57}}{2} \\x_{2} = \frac{9 - \sqrt{57}}{2}[/tex]