Matriks
det = 0
(x - 1)[(x + 2)(x - 4) - 1.4] - 4[1(x - 4) - 1(2x - 4)] + (-1)[1.4 - (x + 2)(2x - 4)] = 0
(x - 1)(x² - 2x - 12) - 4(-x) - (-2x² + 12) = 0
x³ - 3x² - 10x + 12 + 4x + 2x² - 12 = 0
x³ - x² - 6x = 0
x(x - 3)(x + 2) = 0
x = 0 ; x = 3 ; x = -2
akar-akar persamaan :
x = {-2 , 0 , 3}
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Matriks
det = 0
(x - 1)[(x + 2)(x - 4) - 1.4] - 4[1(x - 4) - 1(2x - 4)] + (-1)[1.4 - (x + 2)(2x - 4)] = 0
(x - 1)(x² - 2x - 12) - 4(-x) - (-2x² + 12) = 0
x³ - 3x² - 10x + 12 + 4x + 2x² - 12 = 0
x³ - x² - 6x = 0
x(x - 3)(x + 2) = 0
x = 0 ; x = 3 ; x = -2
akar-akar persamaan :
x = {-2 , 0 , 3}