Odpowiedź:
a) [tex]\sqrt[5]{49}[/tex] = [tex]49^{1/5}[/tex] = [tex]7^{2/5}[/tex]
b) [tex]\frac{1}{\sqrt[4]{7^{5} } }[/tex] = [tex](\sqrt[4]{7}) ^{-5}[/tex] = [tex]7^{-5/4}[/tex]
c) 7 x [tex]7^{1/3}[/tex] = [tex]7^{3/3}[/tex] x [tex]7^{1/3}[/tex] = [tex]7^{4/3}[/tex]
Szczegółowe wyjaśnienie:
Korzystamy z praw potęgowania:
[tex]a^{m}\cdot a^{n} = a^{m+n}\\\\(a^{m})^{n} = a^{m\cdot n}\\\\a^{-n} = \frac{1}{a^{n}}[/tex]
[tex]a) \ \sqrt[5]{49} = \sqrt[5]{7^{2}} = (7^{2})^{\frac{1}{5}} = 7^{2\cdot\frac{1}{5}} = \boxed{7^{\frac{2}{5}}}[/tex]
[tex]b) \ \frac{1}{\sqrt[4]{7^{5}}} = (\sqrt[4]{7^{5}})^{-1} = ((7^{5})^{\frac{1}{4}})^{-1} =7^{5\cdot\frac{1}{4}\cdot(-1)} = \boxed{7^{-\frac{5}{4}}}[/tex]
[tex]c) \ 7\times\sqrt[3]{7} = 7^{1}\times7^{\frac{1}{3}} = 7^{1+\frac{1}{3}} = 7^{\frac{3}{3}+\frac{1}{3}} = \boxed{7^{\frac{4}{3}}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
a) [tex]\sqrt[5]{49}[/tex] = [tex]49^{1/5}[/tex] = [tex]7^{2/5}[/tex]
b) [tex]\frac{1}{\sqrt[4]{7^{5} } }[/tex] = [tex](\sqrt[4]{7}) ^{-5}[/tex] = [tex]7^{-5/4}[/tex]
c) 7 x [tex]7^{1/3}[/tex] = [tex]7^{3/3}[/tex] x [tex]7^{1/3}[/tex] = [tex]7^{4/3}[/tex]
Szczegółowe wyjaśnienie:
Szczegółowe wyjaśnienie:
Korzystamy z praw potęgowania:
[tex]a^{m}\cdot a^{n} = a^{m+n}\\\\(a^{m})^{n} = a^{m\cdot n}\\\\a^{-n} = \frac{1}{a^{n}}[/tex]
[tex]a) \ \sqrt[5]{49} = \sqrt[5]{7^{2}} = (7^{2})^{\frac{1}{5}} = 7^{2\cdot\frac{1}{5}} = \boxed{7^{\frac{2}{5}}}[/tex]
[tex]b) \ \frac{1}{\sqrt[4]{7^{5}}} = (\sqrt[4]{7^{5}})^{-1} = ((7^{5})^{\frac{1}{4}})^{-1} =7^{5\cdot\frac{1}{4}\cdot(-1)} = \boxed{7^{-\frac{5}{4}}}[/tex]
[tex]c) \ 7\times\sqrt[3]{7} = 7^{1}\times7^{\frac{1}{3}} = 7^{1+\frac{1}{3}} = 7^{\frac{3}{3}+\frac{1}{3}} = \boxed{7^{\frac{4}{3}}}[/tex]