Odpowiedź:
1 ) = [tex]\lim_{n \to \infty} \frac{1}{2^{1/n} + 1} = \frac{1}{2}[/tex]
2 ) = [tex]\lim_{n \to \infty} \frac{n^2 + 1}{( n +1)*(n + 2)} = lim \frac{1 + \frac{1}{n^2} }{(1 + \frac{1}{n})*(1 + \frac{2}{n} )} =[/tex] [tex]\frac{1}{1*1} = 1[/tex]
Szczegółowe wyjaśnienie:
[tex]4^{1/n} - 1 = ( 2^{1/n} - 1)*( 2^{1/n} + 1)[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
1 ) = [tex]\lim_{n \to \infty} \frac{1}{2^{1/n} + 1} = \frac{1}{2}[/tex]
2 ) = [tex]\lim_{n \to \infty} \frac{n^2 + 1}{( n +1)*(n + 2)} = lim \frac{1 + \frac{1}{n^2} }{(1 + \frac{1}{n})*(1 + \frac{2}{n} )} =[/tex] [tex]\frac{1}{1*1} = 1[/tex]
Szczegółowe wyjaśnienie:
[tex]4^{1/n} - 1 = ( 2^{1/n} - 1)*( 2^{1/n} + 1)[/tex]