Odpowiedź:
wzór skróconego mnożenia różnicy
[tex]{(a-b)}^{2} = {a}^{2} -2ab + {b}^{2} [/tex]
równanie kwadratowe
[tex]a{x}^{2}+bx+c = 0[/tex]
wzór na deltę
[tex]\Delta = {b}^{2}-4ac[/tex]
[tex]{(8x - 17)}^{2} \leqslant 8x - 17 \\ 64 {x}^{2} - 272x + 289 \leqslant 8x - 17 \\ 64 {x}^{2} - 272x + 289 - 8x + 17 \leqslant 0 \\ 64 {x}^{2} - 280 x + 306 \leqslant 0 \: \: \: \: | \div 2 \\ 32 {x}^{2} - 140 + 153 \leqslant 0 \\ \Delta = ( - 140) ^{2} - 4 \times 32 \times 153 \\ \Delta = 19600 - 19584 = 16 \\ \sqrt{\Delta} = 4 \\ x_{1} = \frac{140 - 4}{64} = \frac{136}{64} = \frac{17}{8} \\ x_{2} = \frac{140 + 4}{64} = \frac{144}{64} = \frac{9}{4} \\ x \in \langle \frac{17}{8} ; \frac{9}{4} \rangle [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
wzór skróconego mnożenia różnicy
[tex]{(a-b)}^{2} = {a}^{2} -2ab + {b}^{2} [/tex]
równanie kwadratowe
[tex]a{x}^{2}+bx+c = 0[/tex]
wzór na deltę
[tex]\Delta = {b}^{2}-4ac[/tex]
[tex]{(8x - 17)}^{2} \leqslant 8x - 17 \\ 64 {x}^{2} - 272x + 289 \leqslant 8x - 17 \\ 64 {x}^{2} - 272x + 289 - 8x + 17 \leqslant 0 \\ 64 {x}^{2} - 280 x + 306 \leqslant 0 \: \: \: \: | \div 2 \\ 32 {x}^{2} - 140 + 153 \leqslant 0 \\ \Delta = ( - 140) ^{2} - 4 \times 32 \times 153 \\ \Delta = 19600 - 19584 = 16 \\ \sqrt{\Delta} = 4 \\ x_{1} = \frac{140 - 4}{64} = \frac{136}{64} = \frac{17}{8} \\ x_{2} = \frac{140 + 4}{64} = \frac{144}{64} = \frac{9}{4} \\ x \in \langle \frac{17}{8} ; \frac{9}{4} \rangle [/tex]