" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Persamaan lingkaran adalah x² + y² + ax + by + c = 0
Melalui (3,-1) maka ;
x² + y² + ax + by + c = 0
3² + (-1)² + a.3 + b.(-1) + c = 0
9 + 1 + 3a - b + c = 0
3a - b + c + 10 = 0 .......... (1)
Melalui (5,3) maka ;
x² + y² + ax + by + c = 0
5² + 3² + a.5 + b.3 + c = 0
25 + 9 + 5a + 3b + c = 0
5a + 3b + c + 34 = 0 .......... (2)
Melalui (6,2) maka ;
x² + y² + ax + by + c = 0
6² + 2² + 6a + 2b + c = 0
36 + 4 + 6a + 2b + c = 0
6a + 2b + c + 40 = 0 .......... (3)
Dari persamaan (1) dan (2) :
3a - b + c + 10 = 0
5a + 3b + c + 34 = 0
-2a - 4b + 0 - 24 = 0
a + 2b + 12 = 0 .......... (4)
Dari persamaan (2) dan (3) :
5a + 3b + c + 34 = 0
6a + 2b + c + 40 = 0
-a + b - 6 = 0
a - b + 6 = 0 .......... (5)
Dari persamaan (4) dan (5) :
a + 2b + 12 = 0
a - b + 6 = 0
3b + 6 = 0
b = -2
b = -2 disubstitusikan ke persamaan (5) :
a - b + 6 = 0
a + 2 + 6 = 0
a + 8 = 0
a = -8
a = -8 , b = -2 disubstitusikan ke persamaan (1) :
3a - b + c + 10 = 0
3(-8) - (-2) + c + 10 = 0
-24 + 2 + c + 10 = 0
c = 12
Jadi persamaan lingkaran adalah :
x² + y² + ax + by + c = 0
x² + y² - 8x - 2y + 12 = 0
Maka diperoleh :
2A = -8 2B = -2 C = 12
A = -4 B = -1
r = √A² + B² - C
= √(-4)² + (-1)² - 12
= √16 + 1 - 12 = √5
Jadi, pusat (-A,-B) = (4,1) dan jari-jari r = √5