Jawab:
Penjelasan dengan langkah-langkah:
perbandingan sisi segitiga siku siku
dgn sudut istimewa
__
soal
Δ ACB siku di C
<C = 90 . <A = 40 , <B = 45
AC : BC : AB = 1 : 1 : √2
AB= 6√2
BC : AB = 1 : √2
BC = AB/√2
BC = (6√2)/ (√2)
BC = 6cm
Jawaban:
ab = 6√2 cm
sudut a = 45°
a) cari panjang bc (dg trigonometri)
sin a = de/mi
sin 45° = bc/ab
√2/2 = bc/6√2
2bc = 6√2 . √2
2bc = 12
bc = 6 cm
atau,
b) cari panjang bc dg perbandingan segitiga istimewa 45°
s : t : a = √2 : 1 : 1
s = sisi miring = ab
t = tinggi = bc
a = alas = ac
panjang bc
s : t = √2 : 1
ab/bc = √2/
6√2/bc = √2/1
bc√2 = 6√2
bc = 6√2/√2 -- rasionalkan
bc = 6√2/√2 x √2/√2
bc = 6√2 . √2 / 2
bc = 12/2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawab:
Penjelasan dengan langkah-langkah:
perbandingan sisi segitiga siku siku
dgn sudut istimewa
__
soal
Δ ACB siku di C
<C = 90 . <A = 40 , <B = 45
AC : BC : AB = 1 : 1 : √2
AB= 6√2
BC : AB = 1 : √2
BC = AB/√2
BC = (6√2)/ (√2)
BC = 6cm
Jawaban:
ab = 6√2 cm
sudut a = 45°
a) cari panjang bc (dg trigonometri)
sin a = de/mi
sin 45° = bc/ab
√2/2 = bc/6√2
2bc = 6√2 . √2
2bc = 12
bc = 6 cm
atau,
b) cari panjang bc dg perbandingan segitiga istimewa 45°
s : t : a = √2 : 1 : 1
s = sisi miring = ab
t = tinggi = bc
a = alas = ac
panjang bc
s : t = √2 : 1
ab/bc = √2/
6√2/bc = √2/1
bc√2 = 6√2
bc = 6√2/√2 -- rasionalkan
bc = 6√2/√2 x √2/√2
bc = 6√2 . √2 / 2
bc = 12/2
bc = 6 cm