•••———••• No. a •••———•••
[tex]3^{2x + 3} = \displaystyle \sqrt[3]{ {27}^{x + 5} }[/tex]
[tex]\displaystyle \sqrt[3]{ {27}^{x + 5} }[/tex]
[tex]{27}^{x + 5}[/tex]
[tex]\iff \: \: { ( 3^3 ) }^{x + 5}[/tex]
[tex]\iff \: \: { ( {3}^{x + 5} ) }^3[/tex]
[tex]\iff \: \: \displaystyle \sqrt[3]{ {( {3}^{x + 5} ) }^3}[/tex]
[tex]\iff \: \: {3}^{x + 5}[/tex]
[tex]3^{2x + 3} = {3}^{x + 5}[/tex]
[tex]2x + 3 = x + 5[/tex]
[tex]2x - x = 5 - 3[/tex]
[tex]x = 2[/tex]
•••———••• No. b •••———•••
[tex]{ (\sqrt{2}) }^{6x - 4} = { \left( \dfrac{1}{2} \right) }^{x - 9}[/tex]
[tex]{ (\sqrt{2}) }^{6x - 4} [/tex]
[tex]\to \: \: \sqrt{2} = 2^{\frac{1}{2}}[/tex]
[tex]\iff \: \: { (\sqrt{2}) }^{6x - 4} [/tex]
[tex]\iff \: \: { (2^{\frac{1}{2}} ) }^{6x - 4}[/tex]
Bilangan pangkat lalu dipangkatkan maka pangkatnya dikalikan
[tex]\frac{1}{2} \times (6x - 4) = 3x - 2[/tex]
[tex]\iff \: \: { (2^{\frac{1}{2}}) }^{6x - 4}[/tex]
[tex]\iff \: \: 2^{3x - 2}[/tex]
[tex]{ (2^{-2} )}^{x - 9}[/tex]
[tex]-2 \times (x - 9) = -2x + 18[/tex]
[tex]\iff \: \: {( 2^{-2}) }^{x - 9}[/tex]
[tex]\iff \: \: 2^{-2x + 18}[/tex]
[tex]2^{3x - 2} = 2^{-2x + 18}[/tex]
[tex]3x - 2 = -2x + 18[/tex]
[tex]3x + 2x = 18 + 2[/tex]
[tex]5x = 20[/tex]
[tex]x = 4[/tex]
•••———••• No. c •••———•••
[tex]\dfrac{1}{ 3^{2x + 2} } = 81[/tex]
[tex]\dfrac{1}{ 3^{2x + 2} } = 3^4[/tex]
[tex]1 = 3^{2x + 2} \times 3^4[/tex]
Semua bilangan apabila dipangkat 0 hasilnya 1 maka 3⁰ = 1
[tex]3^0 = 3^{2x + 2} \times 3^4[/tex]
[tex]3^0 = 3^{2x + 2 + 4}[/tex]
[tex]3^0 = 3^{2x + 6}[/tex]
[tex]0 = 2x + 6[/tex]
[tex]2x + 6 = 0[/tex]
[tex]2x = -6[/tex]
[tex]x = -3[/tex]
•••———••• No. d •••———•••
[tex]{ \left( \dfrac{1}{25} \right) }^{x - 25} = \displaystyle \sqrt{ \dfrac{625}{{5}^{2 - x}}} [/tex]
[tex]\dfrac{1}{25}[/tex]
[tex]\iff \: \: {25}^{-1}[/tex]
[tex]\iff \: \: { (5^2) }^{-1}[/tex]
[tex]{5}^{2 \times -1} = {5}^{-2}[/tex]
[tex]{ \left( \dfrac{1}{25} \right) }^{x - 25}[/tex]
[tex]\iff \: \: {( {25}^{-1} )}^{x - 25}[/tex]
[tex]\iff \: \: {( {5}^{-2} )}^{x - 25}[/tex]
[tex]-2 \times (x - 25) = -2x + 50[/tex]
[tex]\iff \: \: {5}^{-2x + 50}[/tex]
[tex]{ \left( \dfrac{1}{25} \right) }^{x - 25} = \displaystyle \sqrt{ \dfrac{625}{ {5}^{2 - x}}}[/tex]
[tex]{5}^{-2x + 50} = \displaystyle \sqrt{ \dfrac{625}{{5}^{2 - x}}}[/tex]
[tex]{( {5}^{-2x + 50} )}^2 = \dfrac{625}{ 5^{2 - x} }[/tex]
[tex]{5}^{(-2x + 50) \times 2 } = \dfrac{5^4}{ 5^{2 - x} }[/tex]
[tex]{5}^{-4x + 100} = \dfrac{5^4}{ 5^{2 - x} }[/tex]
[tex]{5}^{-4x + 100} \times 5^{2 - x} = 5^4[/tex]
Perkalian antara bilangan pangkat maka pangkatnya dijumlahkan
[tex]-4x + 100 + 2 - x = -5x + 102[/tex]
[tex]{5}^{-5x + 102} = 5^4[/tex]
[tex]-5x + 102 = 4[/tex]
[tex]102 - 4 = 5x[/tex]
[tex]98 = 5x[/tex]
[tex]x = \dfrac{98}{5}[/tex]
[tex]x = 19,6[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
•••———••• No. a •••———•••
[tex]3^{2x + 3} = \displaystyle \sqrt[3]{ {27}^{x + 5} }[/tex]
[tex]\displaystyle \sqrt[3]{ {27}^{x + 5} }[/tex]
[tex]{27}^{x + 5}[/tex]
[tex]\iff \: \: { ( 3^3 ) }^{x + 5}[/tex]
[tex]\iff \: \: { ( {3}^{x + 5} ) }^3[/tex]
[tex]\displaystyle \sqrt[3]{ {27}^{x + 5} }[/tex]
[tex]\iff \: \: \displaystyle \sqrt[3]{ {( {3}^{x + 5} ) }^3}[/tex]
[tex]\iff \: \: {3}^{x + 5}[/tex]
[tex]3^{2x + 3} = {3}^{x + 5}[/tex]
[tex]2x + 3 = x + 5[/tex]
[tex]2x - x = 5 - 3[/tex]
[tex]x = 2[/tex]
•••———••• No. b •••———•••
[tex]{ (\sqrt{2}) }^{6x - 4} = { \left( \dfrac{1}{2} \right) }^{x - 9}[/tex]
[tex]{ (\sqrt{2}) }^{6x - 4} [/tex]
[tex]\to \: \: \sqrt{2} = 2^{\frac{1}{2}}[/tex]
[tex]\iff \: \: { (\sqrt{2}) }^{6x - 4} [/tex]
[tex]\iff \: \: { (2^{\frac{1}{2}} ) }^{6x - 4}[/tex]
Bilangan pangkat lalu dipangkatkan maka pangkatnya dikalikan
[tex]\frac{1}{2} \times (6x - 4) = 3x - 2[/tex]
[tex]\iff \: \: { (2^{\frac{1}{2}}) }^{6x - 4}[/tex]
[tex]\iff \: \: 2^{3x - 2}[/tex]
[tex]{ (2^{-2} )}^{x - 9}[/tex]
Bilangan pangkat lalu dipangkatkan maka pangkatnya dikalikan
[tex]-2 \times (x - 9) = -2x + 18[/tex]
[tex]\iff \: \: {( 2^{-2}) }^{x - 9}[/tex]
[tex]\iff \: \: 2^{-2x + 18}[/tex]
[tex]{ (\sqrt{2}) }^{6x - 4} = { \left( \dfrac{1}{2} \right) }^{x - 9}[/tex]
[tex]2^{3x - 2} = 2^{-2x + 18}[/tex]
[tex]3x - 2 = -2x + 18[/tex]
[tex]3x + 2x = 18 + 2[/tex]
[tex]5x = 20[/tex]
[tex]x = 4[/tex]
•••———••• No. c •••———•••
[tex]\dfrac{1}{ 3^{2x + 2} } = 81[/tex]
[tex]\dfrac{1}{ 3^{2x + 2} } = 3^4[/tex]
[tex]1 = 3^{2x + 2} \times 3^4[/tex]
Semua bilangan apabila dipangkat 0 hasilnya 1 maka 3⁰ = 1
[tex]3^0 = 3^{2x + 2} \times 3^4[/tex]
[tex]3^0 = 3^{2x + 2 + 4}[/tex]
[tex]3^0 = 3^{2x + 6}[/tex]
[tex]0 = 2x + 6[/tex]
[tex]2x + 6 = 0[/tex]
[tex]2x = -6[/tex]
[tex]x = -3[/tex]
•••———••• No. d •••———•••
[tex]{ \left( \dfrac{1}{25} \right) }^{x - 25} = \displaystyle \sqrt{ \dfrac{625}{{5}^{2 - x}}} [/tex]
[tex]\dfrac{1}{25}[/tex]
[tex]\iff \: \: {25}^{-1}[/tex]
[tex]\iff \: \: { (5^2) }^{-1}[/tex]
Bilangan pangkat lalu dipangkatkan maka pangkatnya dikalikan
[tex]{5}^{2 \times -1} = {5}^{-2}[/tex]
[tex]{ \left( \dfrac{1}{25} \right) }^{x - 25}[/tex]
[tex]\iff \: \: {( {25}^{-1} )}^{x - 25}[/tex]
[tex]\iff \: \: {( {5}^{-2} )}^{x - 25}[/tex]
Bilangan pangkat lalu dipangkatkan maka pangkatnya dikalikan
[tex]-2 \times (x - 25) = -2x + 50[/tex]
[tex]\iff \: \: {5}^{-2x + 50}[/tex]
[tex]{ \left( \dfrac{1}{25} \right) }^{x - 25} = \displaystyle \sqrt{ \dfrac{625}{ {5}^{2 - x}}}[/tex]
[tex]{5}^{-2x + 50} = \displaystyle \sqrt{ \dfrac{625}{{5}^{2 - x}}}[/tex]
[tex]{( {5}^{-2x + 50} )}^2 = \dfrac{625}{ 5^{2 - x} }[/tex]
[tex]{5}^{(-2x + 50) \times 2 } = \dfrac{5^4}{ 5^{2 - x} }[/tex]
[tex]{5}^{-4x + 100} = \dfrac{5^4}{ 5^{2 - x} }[/tex]
[tex]{5}^{-4x + 100} \times 5^{2 - x} = 5^4[/tex]
Perkalian antara bilangan pangkat maka pangkatnya dijumlahkan
[tex]-4x + 100 + 2 - x = -5x + 102[/tex]
[tex]{5}^{-4x + 100} \times 5^{2 - x} = 5^4[/tex]
[tex]{5}^{-5x + 102} = 5^4[/tex]
[tex]-5x + 102 = 4[/tex]
[tex]102 - 4 = 5x[/tex]
[tex]98 = 5x[/tex]
[tex]x = \dfrac{98}{5}[/tex]
[tex]x = 19,6[/tex]