Jawaban:
Nomor 4
²log (x + 1) + ²log x - ²log (x + 3) = 0
²log [(x + 1)x] - ²log (x + 3) = ²log 1
²log (x² + x) - ²log (x + 3) = ²log 1
²log [(x² + x)/(x + 3)] = ²log 1
(x² + x)/(x + 3) = 1
x² + x = x + 3
x² + x - x = 3
x² = 3
x = ± √3
sehingga diperoleh nilai x nya ialah
x = -√3 atau x = √3
Nomor 5
log x + log (x + 15) = 2
log (x(x + 15)) = log 2
log (x² + 15x) = log 2
x² + 15x = 2
x(x + 15) = 2
sehingga diperoleh nilai x nya adalah
x = 2 atau x + 15 = 2
x = 2 atau x = -13
Nomor 6
log (log x) = log (3 - log x) + log 2
log (log x) = log ((3 - log x)2)
log x = 6 - 2 log x
log x + 2 log x = 6
log x + log x² = log 6
log (x(x²)) = log 6
log x³ = log 6
x³ = 6
x = (6)^(1/3)
sekian jawaban dari saya
semoga bermanfaat
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
Nomor 4
²log (x + 1) + ²log x - ²log (x + 3) = 0
²log [(x + 1)x] - ²log (x + 3) = ²log 1
²log (x² + x) - ²log (x + 3) = ²log 1
²log [(x² + x)/(x + 3)] = ²log 1
(x² + x)/(x + 3) = 1
x² + x = x + 3
x² + x - x = 3
x² = 3
x = ± √3
sehingga diperoleh nilai x nya ialah
x = -√3 atau x = √3
Nomor 5
log x + log (x + 15) = 2
log (x(x + 15)) = log 2
log (x² + 15x) = log 2
x² + 15x = 2
x(x + 15) = 2
sehingga diperoleh nilai x nya adalah
x = 2 atau x + 15 = 2
x = 2 atau x = -13
Nomor 6
log (log x) = log (3 - log x) + log 2
log (log x) = log ((3 - log x)2)
log x = 6 - 2 log x
log x + 2 log x = 6
log x + log x² = log 6
log (x(x²)) = log 6
log x³ = log 6
x³ = 6
x = (6)^(1/3)
sekian jawaban dari saya
semoga bermanfaat