P = A⁻¹ × B
[tex] \tt{Invers = \frac{1}{2} \begin{gathered}\left[\begin{array}{ccc}2& - 4\\ - 1&3\end{array}\right]\end{gathered}} \\ \\ \tt{ A^ 1 =\begin{gathered}\left[\begin{array}{ccc}1& - 2\\ - \frac{1}{2} & \frac{3}{2} \end{array}\right]\end{gathered} }[/tex]
[tex]\colorbox{pink}{\blue{ \boxed{ \tt{ \color{magenta}{maghfi24}♡}}}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
AP = B
P = A⁻¹ × B
[tex] \tt{A= \begin{gathered}\left[\begin{array}{ccc}3&4\\1&2\end{array}\right]\end{gathered} } \\ \tt{det = 3(2) - 4(1)} \\ \tt{ = 6 - 4} \\ \tt{ = 2}[/tex]
[tex] \tt{Invers = \frac{1}{2} \begin{gathered}\left[\begin{array}{ccc}2& - 4\\ - 1&3\end{array}\right]\end{gathered}} \\ \\ \tt{ A^ 1 =\begin{gathered}\left[\begin{array}{ccc}1& - 2\\ - \frac{1}{2} & \frac{3}{2} \end{array}\right]\end{gathered} }[/tex]
[tex] \tt{P =\begin{gathered}\left[\begin{array}{ccc}1& - 2\\ - \frac{1}{2} & \frac{3}{2} \end{array}\right]\end{gathered} } \begin{gathered}\left[\begin{array}{ccc}2&1\\4&3\end{array}\right]\end{gathered} \\ \\ \tt{P = \begin{gathered}\left[\begin{array}{ccc}1(2) + ( - 2)(4)&1(1) +( - 2)(3) \\ - \frac{1}{2}(2) + \frac{3}{2} (4) & - \frac{1}{2}(1) + \frac{3}{2} (3) \end{array}\right]\end{gathered}} \\ \\ \tt{P = \begin{gathered}\left[\begin{array}{ccc} - 6& - 5\\5&4\end{array}\right]\end{gathered} }[/tex]
[tex]\colorbox{pink}{\blue{ \boxed{ \tt{ \color{magenta}{maghfi24}♡}}}}[/tex]