Jawab:
6⅔ satuan luas
Penjelasan dengan langkah-langkah:
Sketsa grafik y = x² + 3
[tex]\displaystyle y=x^2+3\\\begin{matrix}x & -1 & 0 & 1\\ y & 4 & 3 & 4\end{matrix}[/tex]
Lalu grafik y = x
[tex]\displaystyle y=x\\\begin{matrix}x & -1 & 0 & 1\\ y & -1 & 0 & 1\end{matrix}[/tex]
dan batas x = -1 serta x = 1. Agar mempermudah perhitungan beri batas y = 0 (sumbu X).
[tex]\displaystyle L=\int_{-1}^{1}(x^2+3)dx-\int_{0}^{1}x~dx+\left ( -\int_{-1}^{0}x~dx \right )\\=\left [ \frac{x^3}{3}+3x \right ]_{-1}^1-\left [ \frac{x^2}{2} \right ]_0^1+\left [- \frac{x^2}{2} \right ]_{-1}^0\\=\frac{20}{3}-\frac{1}{2}+\frac{1}{2}\\=6\tfrac{2}{3}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
6⅔ satuan luas
Penjelasan dengan langkah-langkah:
Sketsa grafik y = x² + 3
[tex]\displaystyle y=x^2+3\\\begin{matrix}x & -1 & 0 & 1\\ y & 4 & 3 & 4\end{matrix}[/tex]
Lalu grafik y = x
[tex]\displaystyle y=x\\\begin{matrix}x & -1 & 0 & 1\\ y & -1 & 0 & 1\end{matrix}[/tex]
dan batas x = -1 serta x = 1. Agar mempermudah perhitungan beri batas y = 0 (sumbu X).
[tex]\displaystyle L=\int_{-1}^{1}(x^2+3)dx-\int_{0}^{1}x~dx+\left ( -\int_{-1}^{0}x~dx \right )\\=\left [ \frac{x^3}{3}+3x \right ]_{-1}^1-\left [ \frac{x^2}{2} \right ]_0^1+\left [- \frac{x^2}{2} \right ]_{-1}^0\\=\frac{20}{3}-\frac{1}{2}+\frac{1}{2}\\=6\tfrac{2}{3}[/tex]