Jawaban:
a. ∫x² e^(-2x) dx
= ∫x² (-2) e^(-2x) dx
= -2 ∫x² e^(-2x) dx
= -2 [x² (-1/2) e^(-2x) + (1/2) ∫2x e^(-2x) dx]
= -x² (-1/2) e^(-2x) - (1/2) ∫2 e^(-2x) dx
= -x² (-1/2) e^(-2x) - (1/2) [2 (-1/2) e^(-2x) + (1/2) ∫e^(-2x) dx]
= -x² (-1/2) e^(-2x) - 2 (-1/2) e^(-2x) - (1/4) ∫e^(-2x) dx
= -x² (-1/2) e^(-2x) - 2 (-1/2) e^(-2x) - (1/4) [e^(-2x) (-1/2) + (1/2) ∫1 dx]
= -x² (-1/2) e^(-2x) - 2 (-1/2) e^(-2x) - (1/4) e^(-2x) (-1/2) + (1/4) x
= -x² (-1/2) e^(-2x) - e^(-2x) (-1/2) + (1/4) x + C
b. ∫x sin x dx
= ∫x (-cos x) dx
= - ∫x cos x dx
= - [x (-1/2) sin x + (1/2) ∫2 sin x dx]
= -x (-1/2) sin x - (1/2) ∫2 (-cos x) dx
= -x (-1/2) sin x - (1/2) [2 (-1/2) sin x + (1/2) ∫1 (-cos x) dx]
= -x (-1/2) sin x - sin x (-1) - (1/4) ∫(-cos x) dx
= -x (-1/2) sin x - sin x (-1) - (1/4) [(-cos x) (-1/2) + (1/2) ∫1 dx]
= -x (-1/2) sin x - sin x (-1) - (-cos x) (-1/2) + (1/4) x + C
= x (-1/2) sin x + sin x + (1/4) x + C
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
a. ∫x² e^(-2x) dx
= ∫x² (-2) e^(-2x) dx
= -2 ∫x² e^(-2x) dx
= -2 [x² (-1/2) e^(-2x) + (1/2) ∫2x e^(-2x) dx]
= -x² (-1/2) e^(-2x) - (1/2) ∫2 e^(-2x) dx
= -x² (-1/2) e^(-2x) - (1/2) [2 (-1/2) e^(-2x) + (1/2) ∫e^(-2x) dx]
= -x² (-1/2) e^(-2x) - 2 (-1/2) e^(-2x) - (1/4) ∫e^(-2x) dx
= -x² (-1/2) e^(-2x) - 2 (-1/2) e^(-2x) - (1/4) [e^(-2x) (-1/2) + (1/2) ∫1 dx]
= -x² (-1/2) e^(-2x) - 2 (-1/2) e^(-2x) - (1/4) e^(-2x) (-1/2) + (1/4) x
= -x² (-1/2) e^(-2x) - e^(-2x) (-1/2) + (1/4) x + C
b. ∫x sin x dx
= ∫x (-cos x) dx
= - ∫x cos x dx
= - [x (-1/2) sin x + (1/2) ∫2 sin x dx]
= -x (-1/2) sin x - (1/2) ∫2 (-cos x) dx
= -x (-1/2) sin x - (1/2) [2 (-1/2) sin x + (1/2) ∫1 (-cos x) dx]
= -x (-1/2) sin x - sin x (-1) - (1/4) ∫(-cos x) dx
= -x (-1/2) sin x - sin x (-1) - (1/4) [(-cos x) (-1/2) + (1/2) ∫1 dx]
= -x (-1/2) sin x - sin x (-1) - (-cos x) (-1/2) + (1/4) x + C
= x (-1/2) sin x + sin x + (1/4) x + C