[tex]\sf 1.)\:\:\:| x+7| < 9\\\\-9 < x+7 < 9\\\\x+7 > -9\:\:\:dan \:\:\:x+7 < 9\\\\x > -9-7\:\:\:dan \:\:\:x < 9-7\\\\x > -16\:\:\:dan \:\:\:x < 2\\\\-16 < x < 2[/tex]
∴ HP = {-16 < x < 2}
[tex]\sf 2.)\:\:\:|2x-1| \ge 7\\\\-(2x-1) \ge 7\:\:\:atau\:\:\:2x-1 \ge 7\\\\2x-1 \le -7\:\:\:atau\:\:\:2x-1 \ge 7\\\\2x \le -7+1\:\:\:atau\:\:\:2x \ge 7+1\\\\x\le\frac{-6}{2} \:\:\:atau\:\:\:x\ge \frac{8}{2} \\\\x\le -3\:\:\:atau\:\:\:x\ge 4[/tex]
∴ HP = {x ≤ -3 atau x ≥ 4}
[tex]\sf 3.)\:\:\:|x+3| \le |2x-3|\\\\\sqrt{(x+3)^{2} } \le \sqrt{(2x-3)^{2} }\\\\x^{2} +6x+9 \le 4x^{2} -12x+9\\\\0 \le 4x^{2} -x^{2} -12x-6x+9-9\\\\0 \le 3x^{2} -18x\\\\x^{2} -6x \ge 0\\\\(x-6)(x+0) \ge 0\\\\x \le 0\:\:\:atau\:\:\:x \ge 6[/tex]
∴ HP = {x ≤ 0 atau x ≥ 6}
[tex]\sf 4.)\:\:\:|3x+1|-|2x+4| > 10[/tex]
3x + 1 = 0 2x + 4 = 0
3x = -1 2x = -4
x = -1/3 x = -2
3 daerah penyelesaian:
[tex]\sf x < -2,\:\:-2\le \:x < -\frac{1}{3},\:\:x\ge \:-\frac{1}{3}[/tex]
[tex]\sf (-3x - 1) - (-2x - 4) > 10\\\\-3x - 1 + 2x + 4 > 10\\\\-x > 10 - 3\\\\x < -7[/tex]
[tex]\sf (-3x - 1) - (2x + 4) > 10\\\\-3x - 1 - 2x - 4 > 10\\\\-5x > 10 + 5\\\\x < -\frac{15}{5} \\\\x < -3 \:\:\:\: [tdk\: memenuhi][/tex]
[tex]\sf (3x + 1) - (2x + 4) > 10\\\\3x + 1 - 2x - 4 > 10\\\\x > 10 + 3\\\\x > 13[/tex]
∴ HP = {x < -7 atau x > 13}
[tex]\boxed{\sf shf}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Pertidaksamaan Nilai Mutlak
[tex]\sf 1.)\:\:\:| x+7| < 9\\\\-9 < x+7 < 9\\\\x+7 > -9\:\:\:dan \:\:\:x+7 < 9\\\\x > -9-7\:\:\:dan \:\:\:x < 9-7\\\\x > -16\:\:\:dan \:\:\:x < 2\\\\-16 < x < 2[/tex]
∴ HP = {-16 < x < 2}
[tex]\sf 2.)\:\:\:|2x-1| \ge 7\\\\-(2x-1) \ge 7\:\:\:atau\:\:\:2x-1 \ge 7\\\\2x-1 \le -7\:\:\:atau\:\:\:2x-1 \ge 7\\\\2x \le -7+1\:\:\:atau\:\:\:2x \ge 7+1\\\\x\le\frac{-6}{2} \:\:\:atau\:\:\:x\ge \frac{8}{2} \\\\x\le -3\:\:\:atau\:\:\:x\ge 4[/tex]
∴ HP = {x ≤ -3 atau x ≥ 4}
[tex]\sf 3.)\:\:\:|x+3| \le |2x-3|\\\\\sqrt{(x+3)^{2} } \le \sqrt{(2x-3)^{2} }\\\\x^{2} +6x+9 \le 4x^{2} -12x+9\\\\0 \le 4x^{2} -x^{2} -12x-6x+9-9\\\\0 \le 3x^{2} -18x\\\\x^{2} -6x \ge 0\\\\(x-6)(x+0) \ge 0\\\\x \le 0\:\:\:atau\:\:\:x \ge 6[/tex]
∴ HP = {x ≤ 0 atau x ≥ 6}
[tex]\sf 4.)\:\:\:|3x+1|-|2x+4| > 10[/tex]
3x + 1 = 0 2x + 4 = 0
3x = -1 2x = -4
x = -1/3 x = -2
3 daerah penyelesaian:
[tex]\sf x < -2,\:\:-2\le \:x < -\frac{1}{3},\:\:x\ge \:-\frac{1}{3}[/tex]
[tex]\sf (-3x - 1) - (-2x - 4) > 10\\\\-3x - 1 + 2x + 4 > 10\\\\-x > 10 - 3\\\\x < -7[/tex]
[tex]\sf (-3x - 1) - (2x + 4) > 10\\\\-3x - 1 - 2x - 4 > 10\\\\-5x > 10 + 5\\\\x < -\frac{15}{5} \\\\x < -3 \:\:\:\: [tdk\: memenuhi][/tex]
[tex]\sf (3x + 1) - (2x + 4) > 10\\\\3x + 1 - 2x - 4 > 10\\\\x > 10 + 3\\\\x > 13[/tex]
∴ HP = {x < -7 atau x > 13}
[tex]\boxed{\sf shf}[/tex]