Eksponen
(1/2)^(5 - x) = (1/6)^(2x + 1)
2^-1(5 - x) = 6^-1(2x + 1)
2^(-5 + x) = (2 × 3)^(-2x - 1)
2^(x - 5) = 2^(-2x - 1) . 3^(-2x - 1)
2^(x - 5) / 2^(-2x - 1) = 3^(-2x - 1)
2^(x - 5 - (-2x - 1)) = 3^(-2x - 1)
2^(3x - 4) = 3^(-2x - 1)
2^(3x) / 2^4 = 3^(-2x) / 3
2^(3x) / 3^(-2x) = 2^4 / 3
((2^3)/(3^-2))^x = 16/3
(8/(1/9))^x = 16/3
(8 × 9)^x = 16/3
x log 72 = log (16/3)
x = log (16/3) / log 72
x = ⁷²log (16/3)
x = ⁷²log 16 - ⁷²log 3
Cara lain :
log 2^(-5 + x) = log 6^(-2x - -1)
(-5 + x) log 2 = (-2x - 1) log 6
(x - 5) log 2 = (-2x - 1)(log 2 + log 3)
(x - 5) log 2 - (-2x - 1) log 2 = (-2x - 1) log 3
(x - 5 + 2x + 1) log 2 = (-2x - 1) log 3
(3x - 4) log 2 = (-2x - 1) log 3
3x log 2 - 4 log 2 = - 2x log 3 - log 3
3x log 2 + 2x log 3 = 4 log 2 - log 3
x (3 log 2 + 2 log 3) = 4 log 2 - log 3
x log (2³ × 3²) = log (2⁴/3)
HP = {⁷²log (16/3)}
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Eksponen
(1/2)^(5 - x) = (1/6)^(2x + 1)
2^-1(5 - x) = 6^-1(2x + 1)
2^(-5 + x) = (2 × 3)^(-2x - 1)
2^(x - 5) = 2^(-2x - 1) . 3^(-2x - 1)
2^(x - 5) / 2^(-2x - 1) = 3^(-2x - 1)
2^(x - 5 - (-2x - 1)) = 3^(-2x - 1)
2^(3x - 4) = 3^(-2x - 1)
2^(3x) / 2^4 = 3^(-2x) / 3
2^(3x) / 3^(-2x) = 2^4 / 3
((2^3)/(3^-2))^x = 16/3
(8/(1/9))^x = 16/3
(8 × 9)^x = 16/3
x log 72 = log (16/3)
x = log (16/3) / log 72
x = ⁷²log (16/3)
x = ⁷²log 16 - ⁷²log 3
Cara lain :
log 2^(-5 + x) = log 6^(-2x - -1)
(-5 + x) log 2 = (-2x - 1) log 6
(x - 5) log 2 = (-2x - 1)(log 2 + log 3)
(x - 5) log 2 - (-2x - 1) log 2 = (-2x - 1) log 3
(x - 5 + 2x + 1) log 2 = (-2x - 1) log 3
(3x - 4) log 2 = (-2x - 1) log 3
3x log 2 - 4 log 2 = - 2x log 3 - log 3
3x log 2 + 2x log 3 = 4 log 2 - log 3
x (3 log 2 + 2 log 3) = 4 log 2 - log 3
x log (2³ × 3²) = log (2⁴/3)
x = log (16/3) / log 72
x = ⁷²log (16/3)
HP = {⁷²log (16/3)}