Integral
d(x² - 6x + 1)/dx = 2x - 6
(2x - 6) dx = d(x² - 6x + 1)
∫((x² - 6x + 1)(2x - 6) - 6) dx
= ∫(x² - 6x + 1)(2x -6) dx - ∫6 dx
= ∫(x² - 6x + 1)d(x² - 6x + 1) - 6x
= 1/2 (x² - 6x + 1)² - 6x + C
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Integral
d(x² - 6x + 1)/dx = 2x - 6
(2x - 6) dx = d(x² - 6x + 1)
∫((x² - 6x + 1)(2x - 6) - 6) dx
= ∫(x² - 6x + 1)(2x -6) dx - ∫6 dx
= ∫(x² - 6x + 1)d(x² - 6x + 1) - 6x
= 1/2 (x² - 6x + 1)² - 6x + C