Penjelasan dengan langkah-langkah:
DISKRIMINAN
= b²-4ac
1.
x² - 6x + 9 = 0
ax²+bx+c = 0
Diskriminan
D = b²-4ac
D = (-6)²-4(1)(9)
D = 36-36
D = 0
Jenis akar
Akar real kembar
Penyelesaian
(x-3)(x-3) = 0
x1 = 3 dan x2 = 3
============================
2.
x²-2x+13 = 0
D = (-2)²-4(1)(13)
D = 4-52
D = -48
Karena D < 0 maka
Akar akar tidak real
[tex] = \frac{ - b\pm \sqrt{ {b}^{2} - 4ac } }{2a} \\ = \frac{ - ( - 2)\pm \sqrt{( - 2 {)}^{2} - 4(1)(13) } }{2(1)} \\ = \frac{2\pm \sqrt{-48} }{2} \\ \\ x1 = \frac{2 + \sqrt{-48} }{2} \\ = \sqrt{-48} \\ \\ x2 = \frac{2 - \sqrt{48} }{2} \\ = \sqrt{48} [/tex]
===================================
3.
2x² - 2x - 24 = 0
D = (-2)²-4(2)(-24)
D = 4+192
D = 196
Karena D > 0
Akar real tapi berbeda
2x²-2x+24 = 0
[tex] = \frac{ - b\pm \sqrt{D} }{2a} \\ = \frac{2\pm \sqrt{196} }{2(2)} \\ = \frac{2\pm14}{4} \\ \\ x1 = \frac{2 + 14}{4} \\ = 4 \\ \\ x2 = \frac{2 - 14}{4} \\ = - 3[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
DISKRIMINAN
= b²-4ac
1.
x² - 6x + 9 = 0
ax²+bx+c = 0
Diskriminan
D = b²-4ac
D = (-6)²-4(1)(9)
D = 36-36
D = 0
Jenis akar
Akar real kembar
Penyelesaian
x² - 6x + 9 = 0
(x-3)(x-3) = 0
x1 = 3 dan x2 = 3
============================
2.
x²-2x+13 = 0
ax²+bx+c = 0
Diskriminan
D = b²-4ac
D = (-2)²-4(1)(13)
D = 4-52
D = -48
Karena D < 0 maka
Jenis akar
Akar akar tidak real
Penyelesaian
x²-2x+13 = 0
[tex] = \frac{ - b\pm \sqrt{ {b}^{2} - 4ac } }{2a} \\ = \frac{ - ( - 2)\pm \sqrt{( - 2 {)}^{2} - 4(1)(13) } }{2(1)} \\ = \frac{2\pm \sqrt{-48} }{2} \\ \\ x1 = \frac{2 + \sqrt{-48} }{2} \\ = \sqrt{-48} \\ \\ x2 = \frac{2 - \sqrt{48} }{2} \\ = \sqrt{48} [/tex]
===================================
3.
2x² - 2x - 24 = 0
ax²+bx+c = 0
Diskriminan
D = b²-4ac
D = (-2)²-4(2)(-24)
D = 4+192
D = 196
Karena D > 0
Jenis akar
Akar real tapi berbeda
Penyelesaian
2x²-2x+24 = 0
[tex] = \frac{ - b\pm \sqrt{D} }{2a} \\ = \frac{2\pm \sqrt{196} }{2(2)} \\ = \frac{2\pm14}{4} \\ \\ x1 = \frac{2 + 14}{4} \\ = 4 \\ \\ x2 = \frac{2 - 14}{4} \\ = - 3[/tex]