Jawaban:
x² + 2x - 8 = 0
[tex]\begin{aligned}\sf {x}^{2} +2x -8 &= \sf 0 \\ \sf {x}^{2} +2x&= \sf 8 \\ \sf {x}^{2} 2x + ( \frac{2}{2}) {}^{2} &= \sf 8 + ( \frac{2}{2} ) {}^{2} \\ \sf (x + 1) {}^{2} &= \sf 8+ 1² \\ \sf (x +1) {}^{2}&= \sf 8 + 1 \\ \sf ( x +1 ) {}^{2} &= \sf 9\\ \sf x +&= \sf \sqrt{ 9} \\ \sf x +1&= \sf ± 3 \\ \\ \sf \to (x +1) &= \sf 3\\ \sf x&= \sf 3-1 \\ \sf x&= \sf \red{ 2 } \\ \\ \sf \to (x + 1) &= \sf - 3\\ \sf x&= \sf - 3-1 \\ \sf x&= \sf \red{-4}\end{aligned}[/tex]
[tex] \sf HP = \{ \red{-4,2} \}[/tex]
'조슈아' (Svt)
x+4=0
x-2=0
Penjelasan dengan langkah-langkah:
x²+4x-2x-8=0
x×(x+4)-2(x+4)=0
(x+4)×(x-2)=0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
Penyelesaian :
x² + 2x - 8 = 0
[tex]\begin{aligned}\sf {x}^{2} +2x -8 &= \sf 0 \\ \sf {x}^{2} +2x&= \sf 8 \\ \sf {x}^{2} 2x + ( \frac{2}{2}) {}^{2} &= \sf 8 + ( \frac{2}{2} ) {}^{2} \\ \sf (x + 1) {}^{2} &= \sf 8+ 1² \\ \sf (x +1) {}^{2}&= \sf 8 + 1 \\ \sf ( x +1 ) {}^{2} &= \sf 9\\ \sf x +&= \sf \sqrt{ 9} \\ \sf x +1&= \sf ± 3 \\ \\ \sf \to (x +1) &= \sf 3\\ \sf x&= \sf 3-1 \\ \sf x&= \sf \red{ 2 } \\ \\ \sf \to (x + 1) &= \sf - 3\\ \sf x&= \sf - 3-1 \\ \sf x&= \sf \red{-4}\end{aligned}[/tex]
[tex] \sf HP = \{ \red{-4,2} \}[/tex]
'조슈아' (Svt)
Jawaban:
x+4=0
x-2=0
Penjelasan dengan langkah-langkah:
x² + 2x - 8 = 0
x²+4x-2x-8=0
x×(x+4)-2(x+4)=0
(x+4)×(x-2)=0
x+4=0
x-2=0