Penjelasan dengan langkah-langkah:
Turunan fungsi aljabar
[tex]f(x) = mn {}^{x} \to \: f'(x) = x \: . \: mn {}^{x - 1} \\ [/tex]
maka:
[tex]f(x) = \frac{3}{ {x}^{2} } - \frac{4}{x} + 5 \\ f(x) = 3 \: . \: {x}^{ - 2} - 4 \: . \: x {}^{ - 1} + 5 \\ f'(x) = - 2(3) {x}^{ - 2 - 1} - ( - 1 \: . \: 4) {x}^{ - 1 - 1} + 0 \\ f'(x) = - 6 {x}^{ - 3} + 4{x}^{ - 2} \\ f'(x) = - \frac{6}{ {x}^{3} } + \frac{4}{ {x}^{2} } \\ atau \\ f'(x) = \frac{4}{ {x}^{2} } - \frac{6}{ {x}^{3} } [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
Turunan fungsi aljabar
[tex]f(x) = mn {}^{x} \to \: f'(x) = x \: . \: mn {}^{x - 1} \\ [/tex]
maka:
[tex]f(x) = \frac{3}{ {x}^{2} } - \frac{4}{x} + 5 \\ f(x) = 3 \: . \: {x}^{ - 2} - 4 \: . \: x {}^{ - 1} + 5 \\ f'(x) = - 2(3) {x}^{ - 2 - 1} - ( - 1 \: . \: 4) {x}^{ - 1 - 1} + 0 \\ f'(x) = - 6 {x}^{ - 3} + 4{x}^{ - 2} \\ f'(x) = - \frac{6}{ {x}^{3} } + \frac{4}{ {x}^{2} } \\ atau \\ f'(x) = \frac{4}{ {x}^{2} } - \frac{6}{ {x}^{3} } [/tex]