Respuesta:
[tex]{(x+4)}^{2} + 3 = (x² + 8x + 16) + 3 \\ x² + 8x + 16 + 3 = x² + 8x + 19[/tex]
[tex]{x}^{3} + 3{x}^{2}y + 3x{y}^{2} + {y}^{3} \\ {x}^{3} + 3xy (1×x×1 + 1×1×y) + {y}^{3} \\ {x}^{3} + {y}^{3} + 3xy (x +y)[/tex]
[tex]{x}^{7} + 4{x}^{3}{y}^{4} - 4{x}^{4}{y}^{3} \\ {x}^{7} + 4{x}^{3}{y}^{3} ( y - x)[/tex]
[tex]{(x - 3)}^{2} + 8 = ({x}^{2} - 6x + 9) + 8 \\ {x}^{2} - 6x + 9 + 8 = {x}^{2} - 6x + 17[/tex]
[tex]{(x - 1)}^{2} - 1 = ({x}^{2} - 2x + 1) - 1 \\ {x}^{2} - 2x + 1 - 1 = ({x}^{2} - 2x[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Respuesta:
[tex]{(x+4)}^{2} + 3 = (x² + 8x + 16) + 3 \\ x² + 8x + 16 + 3 = x² + 8x + 19[/tex]
[tex]{x}^{3} + 3{x}^{2}y + 3x{y}^{2} + {y}^{3} \\ {x}^{3} + 3xy (1×x×1 + 1×1×y) + {y}^{3} \\ {x}^{3} + {y}^{3} + 3xy (x +y)[/tex]
[tex]{x}^{7} + 4{x}^{3}{y}^{4} - 4{x}^{4}{y}^{3} \\ {x}^{7} + 4{x}^{3}{y}^{3} ( y - x)[/tex]
[tex]{(x - 3)}^{2} + 8 = ({x}^{2} - 6x + 9) + 8 \\ {x}^{2} - 6x + 9 + 8 = {x}^{2} - 6x + 17[/tex]
[tex]{(x - 1)}^{2} - 1 = ({x}^{2} - 2x + 1) - 1 \\ {x}^{2} - 2x + 1 - 1 = ({x}^{2} - 2x[/tex]