Explicación paso a paso:
[tex]64x {}^{2} y {}^{4} - 169 \\ 8 {}^{2}x {}^{2} (y {}^{2} ) {}^{2} - 13 {}^{2} \\ (8xy {}^{2} ) {}^{2} - 13 {}^{2} [/tex]
Al Factorizar De La Forma
[tex]a {}^{2} - b {}^{2} = (a - b)(a + b)[/tex]
Tenemos,
[tex](8xy {}^{2} - 13)(8xy {}^{2} + 13)[/tex]
Ejercicio B
[tex] \frac{1}{4} m {}^{2} - 2my {}^{2} + 4y {}^{4} \\ \\ ( \frac{1}{2} ) {}^{2} m {}^{2} - 2 \times \frac{1}{2} m \times 2y {}^{2} + 2 {}^{2} \times (y {}^{2} ) {}^{2} \\ \\ ( \frac{1}{2} m) {}^{2} - 2 \times \frac{1}{2} m \times 2y {}^{2} + (2y {}^{2} ) {}^{2} [/tex]
Usamos La Formula
Reemplazamos,
[tex]( \frac{1}{2} m - 2y {}^{2} ) {}^{2} [/tex]
Espero Te Sirva, Saludos JB
Dame Corona, Por Fa.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Explicación paso a paso:
[tex]64x {}^{2} y {}^{4} - 169 \\ 8 {}^{2}x {}^{2} (y {}^{2} ) {}^{2} - 13 {}^{2} \\ (8xy {}^{2} ) {}^{2} - 13 {}^{2} [/tex]
Al Factorizar De La Forma
[tex]a {}^{2} - b {}^{2} = (a - b)(a + b)[/tex]
Tenemos,
[tex](8xy {}^{2} - 13)(8xy {}^{2} + 13)[/tex]
Ejercicio B
[tex] \frac{1}{4} m {}^{2} - 2my {}^{2} + 4y {}^{4} \\ \\ ( \frac{1}{2} ) {}^{2} m {}^{2} - 2 \times \frac{1}{2} m \times 2y {}^{2} + 2 {}^{2} \times (y {}^{2} ) {}^{2} \\ \\ ( \frac{1}{2} m) {}^{2} - 2 \times \frac{1}{2} m \times 2y {}^{2} + (2y {}^{2} ) {}^{2} [/tex]
Usamos La Formula
[tex]a {}^{2} - b {}^{2} = (a - b)(a + b)[/tex]
Reemplazamos,
[tex]( \frac{1}{2} m - 2y {}^{2} ) {}^{2} [/tex]
Espero Te Sirva, Saludos JB
Dame Corona, Por Fa.