tan²x = 1/cosx + 1 , 0<x< 2π
sin²x = cos x+ cos²x , 0<x< 2π
cos x+cos²x-sin²x =0 , 0<x< 2π
cos²x +cos x- (1-cos²x) =0 , 0<x< 2π
cos²x +cos x- 1+cos²x) =0 , 0<x< 2π
2cos²x +cos x- 1 =0 , 0<x< 2π
(2cosx -1)(cos x+1) =0 , 0<x< 2π
2cosx1 -1=0
2cosx1 =1
cosx1 =½
x1=π/3 ; 5/3 π
cosx2 + 1=0
cosx2 =-1
x2=π;
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
tan²x = 1/cosx + 1 , 0<x< 2π
sin²x = cos x+ cos²x , 0<x< 2π
cos x+cos²x-sin²x =0 , 0<x< 2π
cos²x +cos x- (1-cos²x) =0 , 0<x< 2π
cos²x +cos x- 1+cos²x) =0 , 0<x< 2π
2cos²x +cos x- 1 =0 , 0<x< 2π
(2cosx -1)(cos x+1) =0 , 0<x< 2π
2cosx1 -1=0
2cosx1 =1
cosx1 =½
x1=π/3 ; 5/3 π
cosx2 + 1=0
cosx2 =-1
x2=π;