Nota: Me dijiste que no hiciera las cosas muy extensas, te las voy a resumir paso por paso
a) [tex]\left(2x+4\right)^3[/tex]
[tex]=\left(2x\right)^3+3\left(2x\right)^2\cdot \:4+3\cdot \:2x\cdot \:4^2+4^3[/tex] ← Se simplifica
[tex]\boxed{=8x^3+48x^2+96x+64}[/tex] ← resultado
b) [tex]\left(3m-2\right)^3[/tex]
[tex]=\left(3m\right)^3-3\left(3m\right)^2\cdot \:2+3\cdot \:3m\cdot \:2^2-2^3[/tex]
[tex]\boxed{=27m^3-54m^2+36m-8}[/tex]
c) [tex]\left(4x^2+1\right)^3[/tex]
[tex]=\left(4x^2\right)^3+3\left(4x^2\right)^2\cdot \:1+3\cdot \:4x^2\cdot \:1^2+1^3[/tex]
[tex]\boxed{=64x^6+48x^4+12x^2+1}[/tex]
d) [tex]\left(m+n\right)\left(m^2-mn+n^2\right)[/tex]
[tex]=mm^2+m\left(-mn\right)+mn^2+nm^2+n\left(-mn\right)+nn^2[/tex]
[tex]\boxed{=m^3+n^3}[/tex]
e) [tex]\left(x-2\right)\left(x^2+2x+4\right)[/tex]
[tex]=xx^2+x\cdot \:2x+x\cdot \:4-2x^2-2\cdot \:2x-2\cdot \:4[/tex]
[tex]\boxed{=x^3-8}[/tex]
f) [tex]\left(3x+5\right)\left(9x^2-15x+25\right)[/tex]
[tex]=3x\cdot \:9x^2+3x\left(-15x\right)+3x\cdot \:25+5\cdot \:9x^2+5\left(-15x\right)+5\cdot \:25[/tex]
[tex]\boxed{=27x^3+125}[/tex]
g) [tex](k + p)^4[/tex]
[tex]\boxed{=k^4+4k^3p+6k^2p^2+4kp^3+p^4}[/tex]
h) [tex]\left(m+n\right)^5[/tex]
[tex]\boxed{=m^5+5m^4n+10m^3n^2+10m^2n^3+5mn^4+n^5}[/tex]
i) [tex]\left(2x+1\right)^4[/tex]
[tex]\boxed{=16x^4+32x^3+24x^2+8x+1}[/tex]
MUCHA SUERTE...
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
RESOLVER:
Nota: Me dijiste que no hiciera las cosas muy extensas, te las voy a resumir paso por paso
a) [tex]\left(2x+4\right)^3[/tex]
[tex]=\left(2x\right)^3+3\left(2x\right)^2\cdot \:4+3\cdot \:2x\cdot \:4^2+4^3[/tex] ← Se simplifica
[tex]\boxed{=8x^3+48x^2+96x+64}[/tex] ← resultado
b) [tex]\left(3m-2\right)^3[/tex]
[tex]=\left(3m\right)^3-3\left(3m\right)^2\cdot \:2+3\cdot \:3m\cdot \:2^2-2^3[/tex]
[tex]\boxed{=27m^3-54m^2+36m-8}[/tex]
c) [tex]\left(4x^2+1\right)^3[/tex]
[tex]=\left(4x^2\right)^3+3\left(4x^2\right)^2\cdot \:1+3\cdot \:4x^2\cdot \:1^2+1^3[/tex]
[tex]\boxed{=64x^6+48x^4+12x^2+1}[/tex]
d) [tex]\left(m+n\right)\left(m^2-mn+n^2\right)[/tex]
[tex]=mm^2+m\left(-mn\right)+mn^2+nm^2+n\left(-mn\right)+nn^2[/tex]
[tex]\boxed{=m^3+n^3}[/tex]
e) [tex]\left(x-2\right)\left(x^2+2x+4\right)[/tex]
[tex]=xx^2+x\cdot \:2x+x\cdot \:4-2x^2-2\cdot \:2x-2\cdot \:4[/tex]
[tex]\boxed{=x^3-8}[/tex]
f) [tex]\left(3x+5\right)\left(9x^2-15x+25\right)[/tex]
[tex]=3x\cdot \:9x^2+3x\left(-15x\right)+3x\cdot \:25+5\cdot \:9x^2+5\left(-15x\right)+5\cdot \:25[/tex]
[tex]\boxed{=27x^3+125}[/tex]
g) [tex](k + p)^4[/tex]
[tex]\boxed{=k^4+4k^3p+6k^2p^2+4kp^3+p^4}[/tex]
h) [tex]\left(m+n\right)^5[/tex]
[tex]\boxed{=m^5+5m^4n+10m^3n^2+10m^2n^3+5mn^4+n^5}[/tex]
i) [tex]\left(2x+1\right)^4[/tex]
[tex]\boxed{=16x^4+32x^3+24x^2+8x+1}[/tex]
MUCHA SUERTE...