Odpowiedź:
[tex]\huge\boxed{\huge\boxed{~~zad.~3~~}}[/tex]
[tex]\huge\boxed{~~a)~~log_{3}9=2~~}[/tex] [tex]\huge\boxed{~~b)~~log175-log1\frac{3}{4}=2~~}[/tex]
[tex]\huge\boxed{~~c)~~log_{3}6+log_{3}1,5=2~~}[/tex]
[tex]\huge\boxed{~~d)~~log_{2}\sqrt{18} -log_{2}3=\dfrac{1}{2} ~~}[/tex]
Szczegółowe wyjaśnienie:
Korzystamy ze wzorów:
Obliczamy:
[tex]\huge\boxed{~~zad.~3~~}[/tex]
[tex]\huge\boxed{a)}~~log_{3}9=log_{3}3^{2}=2\cdot log_{3}3=2\cdot 1=\boxed{2}[/tex]
[tex]\huge\boxed{b)}~~log175-log1\frac{3}{4} =log175-log\frac{7}{4} =log(175\div \frac{7}{4} )=log(\frac{175\!\!\!\!\!\diagup^2^5}{1} \cdot \frac{4}{7\!\!\!\!\diagup_1} )=log100=log_{10}100=log_{10}10^{2}=2\cdot log_{10}10=2\cdot 1=\boxed{2}[/tex]
[tex]\huge\boxed{c)}~~log_{3}6+log_{3}1,5=log_{3}6+log_{3}\frac{3}{2} =log_{3}(6\!\!\!\diagup^3\cdot \frac{3}{2\!\!\!\!\diagup_1})=log_{3}9=log_{3}3^{2}=2\cdot log_{3}3=2\cdot 1=\boxed{2}[/tex]
[tex]\huge\boxed{d)}~~log_{2}\sqrt{18} -log_{2}3=log_{2}\sqrt{9\cdot 2} -log_{2}3=log_{2}\sqrt{3^{2}\cdot 2} -log_{2}3=log_{2}3\sqrt{2} -log_{2}3=log_{2}\frac{3\!\!\!\!\diagup^1\sqrt{2} }{3\!\!\!\!\diagup_1} =log_{2}\sqrt{2} =log_{2}2^{\frac{1}{2} }=\dfrac{1}{2} \cdot log_{2}2=\dfrac{1}{2} \cdot 1=\boxed{\dfrac{1}{2}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\huge\boxed{\huge\boxed{~~zad.~3~~}}[/tex]
[tex]\huge\boxed{~~a)~~log_{3}9=2~~}[/tex] [tex]\huge\boxed{~~b)~~log175-log1\frac{3}{4}=2~~}[/tex]
[tex]\huge\boxed{~~c)~~log_{3}6+log_{3}1,5=2~~}[/tex]
[tex]\huge\boxed{~~d)~~log_{2}\sqrt{18} -log_{2}3=\dfrac{1}{2} ~~}[/tex]
Szczegółowe wyjaśnienie:
Korzystamy ze wzorów:
Obliczamy:
[tex]\huge\boxed{~~zad.~3~~}[/tex]
[tex]\huge\boxed{a)}~~log_{3}9=log_{3}3^{2}=2\cdot log_{3}3=2\cdot 1=\boxed{2}[/tex]
[tex]\huge\boxed{b)}~~log175-log1\frac{3}{4} =log175-log\frac{7}{4} =log(175\div \frac{7}{4} )=log(\frac{175\!\!\!\!\!\diagup^2^5}{1} \cdot \frac{4}{7\!\!\!\!\diagup_1} )=log100=log_{10}100=log_{10}10^{2}=2\cdot log_{10}10=2\cdot 1=\boxed{2}[/tex]
[tex]\huge\boxed{c)}~~log_{3}6+log_{3}1,5=log_{3}6+log_{3}\frac{3}{2} =log_{3}(6\!\!\!\diagup^3\cdot \frac{3}{2\!\!\!\!\diagup_1})=log_{3}9=log_{3}3^{2}=2\cdot log_{3}3=2\cdot 1=\boxed{2}[/tex]
[tex]\huge\boxed{d)}~~log_{2}\sqrt{18} -log_{2}3=log_{2}\sqrt{9\cdot 2} -log_{2}3=log_{2}\sqrt{3^{2}\cdot 2} -log_{2}3=log_{2}3\sqrt{2} -log_{2}3=log_{2}\frac{3\!\!\!\!\diagup^1\sqrt{2} }{3\!\!\!\!\diagup_1} =log_{2}\sqrt{2} =log_{2}2^{\frac{1}{2} }=\dfrac{1}{2} \cdot log_{2}2=\dfrac{1}{2} \cdot 1=\boxed{\dfrac{1}{2}}[/tex]