Odpowiedź:
Wynik dzielenia:
[tex]0,5x^2+0,25x+1,125\\\\(\frac{1}{2}x^2+\frac{1}{4}x+1\frac{1}{8})[/tex]
Reszta:
[tex]0,0625\\\\(\frac{1}{16})[/tex]
Szczegółowe wyjaśnienie:
[tex](x^3+2x-1):(2x-1)=\frac{x^3+2x-1}{2x-1}=\frac{x^3+2x-1}{2x-1}=\frac{2(\frac{1}{2}x^3+x-\frac{1}{2})}{2(x-\frac{1}{2})}=\frac{\frac{1}{2}x^3+x-\frac{1}{2}}{x-\frac{1}{2}}[/tex]
W ułamkach dziesiętnych
[tex]{\begin{array}{|l|l|l|l|l|}\cline{1-5}\;&0,5&0&1&-0,5 \\ \cline{1-5}0,5&\;&0,25&0,25&0,5625 \\ \cline{1-5}\;&0,5&0,25&1,125&0,0625 \\ \cline{1-5}\end{array}}[/tex]
z działaniami:
W ułamkach zwykłych
[tex]{\begin{array}{|l|l|l|l|l|}\cline{1-5}&\frac{1}{2}&0&1&-\frac{1}{2} \\ \cline{1-5}\frac{1}{2}&&\frac{1}{4}&\frac{1}{8}&\frac{9}{16} \\ \cline{1-5}&\frac{1}{2}&\frac{1}{4}&\frac{1}{4}&\frac{1}{16} \\ \cline{1-5}\end{array}}[/tex]
[tex]{\begin{array}{|l|l|l|l|l|}\cline{1-5}\;&\frac{1}{2}&0&1&-\frac{1}{2} \\ \cline{1-5}\frac{1}{2}&\;&\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}&\frac{1}{2}\cdot\frac{1}{4}=\frac{1}{8}&\frac{1}{2}\cdot1\frac{1}{8}=\frac{9}{16} \\ \cline{1-5}\;&\frac{1}{2}&0+\frac{1}{4}=\frac{1}{4}&1+\frac{1}{8}=1\frac{1}{8}&-\frac{1}{2}+\frac{9}{16}=\frac{1}{16} \\ \cline{1-5}\end{array}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Wynik dzielenia:
[tex]0,5x^2+0,25x+1,125\\\\(\frac{1}{2}x^2+\frac{1}{4}x+1\frac{1}{8})[/tex]
Reszta:
[tex]0,0625\\\\(\frac{1}{16})[/tex]
Szczegółowe wyjaśnienie:
[tex](x^3+2x-1):(2x-1)=\frac{x^3+2x-1}{2x-1}=\frac{x^3+2x-1}{2x-1}=\frac{2(\frac{1}{2}x^3+x-\frac{1}{2})}{2(x-\frac{1}{2})}=\frac{\frac{1}{2}x^3+x-\frac{1}{2}}{x-\frac{1}{2}}[/tex]
W ułamkach dziesiętnych
[tex]{\begin{array}{|l|l|l|l|l|}\cline{1-5}\;&0,5&0&1&-0,5 \\ \cline{1-5}0,5&\;&0,25&0,25&0,5625 \\ \cline{1-5}\;&0,5&0,25&1,125&0,0625 \\ \cline{1-5}\end{array}}[/tex]
z działaniami:
[tex]{\begin{array}{|l|l|l|l|l|}\cline{1-5}\;&0,5&0&1&-0,5 \\ \cline{1-5}0,5&\;&0,25&0,25&0,5625 \\ \cline{1-5}\;&0,5&0,25&1,125&0,0625 \\ \cline{1-5}\end{array}}[/tex]
W ułamkach zwykłych
[tex]{\begin{array}{|l|l|l|l|l|}\cline{1-5}&\frac{1}{2}&0&1&-\frac{1}{2} \\ \cline{1-5}\frac{1}{2}&&\frac{1}{4}&\frac{1}{8}&\frac{9}{16} \\ \cline{1-5}&\frac{1}{2}&\frac{1}{4}&\frac{1}{4}&\frac{1}{16} \\ \cline{1-5}\end{array}}[/tex]
z działaniami:
[tex]{\begin{array}{|l|l|l|l|l|}\cline{1-5}\;&\frac{1}{2}&0&1&-\frac{1}{2} \\ \cline{1-5}\frac{1}{2}&\;&\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}&\frac{1}{2}\cdot\frac{1}{4}=\frac{1}{8}&\frac{1}{2}\cdot1\frac{1}{8}=\frac{9}{16} \\ \cline{1-5}\;&\frac{1}{2}&0+\frac{1}{4}=\frac{1}{4}&1+\frac{1}{8}=1\frac{1}{8}&-\frac{1}{2}+\frac{9}{16}=\frac{1}{16} \\ \cline{1-5}\end{array}}[/tex]