Odpowiedź:
1.
a)
[tex]log_2 448 + log_2 12 - log_2 168 = log_2 \frac{448*12}{168} = log_2 32 = 5[/tex] bo [tex]2^5 = 32[/tex]
b )
[tex]log_{1/5} 25^{-3} - log_3 27^{5/2} - log_}1/3} ( log 1000^9) =\\= - 3* log_{1/5} 25 - \frac{5}{2} log_327 - log_{1/3} ( 9*3) =\\= - 3*( - 2) - \frac{5}{2}*3 - log_{1/3} 27 = 6 - 7,5 - ( - 3) = 9 - 7,5 = 1,5[/tex]
c ) [tex]log_{1/3} 162 + log_{1/3} 21 - 3 log_{1/3} 84 = log_{1/3} 162^6 + log_{1/3} 21^3 - log_{1/3} 84^3 =[/tex]
[tex]= log_{1/3} \frac{162^6*21^3}{84^3} = log_{1/3} \frac{162^6}{64}[/tex] [tex]= 3* log_{3^{-1}} \frac{162^2}{4} = -3 log_3 6561[/tex]
-------------------------------------------------------------------------------------
3.
f ( x) = [tex]log_{1/16} x[/tex] < [tex]\frac{1}{2} ; \sqrt{2} >[/tex]
Funkcja jest malejąca, więc
[tex]y_{max} = f ( 1/2) = log_{1/16} \frac{1}{2} = \frac{1}{4}[/tex] bo [tex]( \frac{1}{16} )^{1/4} = \sqrt[4]{\frac{1}{16} } = \frac{1}{2}[/tex]
------------------------------------------
[tex]y_{min} = f (\sqrt{2} ) = log_{1/16} \sqrt{2} = log_{1/16} 2^{1/2} = \frac{1}{2} *( - \frac{1}{4} ) = - \frac{1}{8}[/tex]
-----------------------------------------------------------------------------------
4.
f ( x) = [tex]log_{1/2} ( x + 1 ) - 5[/tex]
x + 1 > 0 ⇒ x > - 1
Df = ( - 1; + ∞ )
-----------------------
Asymptota pionowa : x = - 1
-------------------------------------------------
Funkcja jest malejąca.
---------------------------------------
f ( - 1/2) = [tex]log_{1/2} \frac{1}{2} - 5 = 1 - 5 = - 4[/tex] A = ( -1/2 , - 4 )
f ( 0 ) = [tex]log_{1/2} 1 - 5 = 0 - 5 = - 5[/tex] B = ( 0, - 5 )
f (1 ) = [tex]log_{1/2} 2 - 5 = - 1 - 5 = -6[/tex] C = ( 1, - 6 )
f ( 3) = [tex]log_{1/2} 4 - 5 = - 2 - 5 = - 7[/tex] D = ( 3 , - 7 )
Narysuj wykres - linia przechodząca przez punkty A, B, C, D
===========================================================
5.
a ) [tex]3^{- 3- 0,4}* 9^{3 + 0,2} = 3^{- 3 - 0,4}* (3^2)^{ 3 + 0,2} = 3^{-3,4}*3^{6,4} = 3^3 = 27[/tex]
b ) [tex]( \frac{1}{3} )^{-5} : 27^{0,3} : \frac{1}{3^{10}} = 3^5 : ( 3^3)^{0,3 }: 3^{-10} = 3^5 : 3^{0,9} : 3^{-10} =[/tex]
[tex]= 3^{5 - 0,9} : 3^{-10} = 3^{4,1} : 3^{- 10} = 3^{4,1 - ( - 10)} = 3^{14,1}[/tex]
c ) [tex][ ( 81^{-3/8})^{4/3}]^{-2} = [ 81^{-3/8*4/3}]^{-2} = [ 81^{-1/2}]^{-2} = 81^{1} = 81[/tex]
-------------------------------------------------------------------------------------------------
6.
[tex]log_{16} x = \frac{log_3 1/27 + log_3 ( 3\sqrt{3} )}{log_2 16 - log_2 8} = \frac{- 3 +1.5}{log_2 ( 16 : 8 )}[/tex] [tex]= \frac{-1,5}{log_2 2} = - 1,5[/tex]
x = [tex]16^{-1,5} = \frac{1}{16^{1,5}} = \frac{1}{16*4} = \frac{1}{64}[/tex]
---------------------------------------------
7.
a ) [tex]f ( x) = log_9 x[/tex] P = ( [tex]\frac{1}{\sqrt{3} } ,[/tex] t )
więc [tex]log_9 \frac{1}{\sqrt{3} } = log_{3^2} 3^{-1/2} = \frac{1}{2} *(-\frac{1}{2} )*log_3 3= - \frac{1}{4} *1 = - \frac{1}{4}[/tex]
t = - [tex]\frac{1}{4}[/tex]
-------------------------
b ) [tex]f ( x) = log_{1/2} x[/tex] P = ( [tex]\frac{1}{t}[/tex] , - 3 )
więc
[tex]log_{1/2} \frac{1}{t} = - 3[/tex] ⇒ [tex]\frac{1}{t} = ( 1/ 2)^{-3} = 2^3 = 8\\t = \frac{1}{8}[/tex]
===================================
8.
P = ( - 1 [tex]\frac{1}{3}[/tex] , p ) Q = ( q , 125 )
f ( x) = ( 5 √5 [tex])^x[/tex]
p = ( 5 [tex]\sqrt{5} )^{-4/3} = ( 5 ^{3/2})^{-4/3} = 5^{- 2} = \frac{1}{5^2} = \frac{1}{25}[/tex]
----------------------------------------------------------------
oraz
[tex]( 5[/tex] [tex]\sqrt{5} )^q = 125 = 5^3[/tex]
[tex](5^{1,5})^q = 5^3\\1,5 q = 3\\q = 2[/tex]
=========
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
1.
a)
[tex]log_2 448 + log_2 12 - log_2 168 = log_2 \frac{448*12}{168} = log_2 32 = 5[/tex] bo [tex]2^5 = 32[/tex]
b )
[tex]log_{1/5} 25^{-3} - log_3 27^{5/2} - log_}1/3} ( log 1000^9) =\\= - 3* log_{1/5} 25 - \frac{5}{2} log_327 - log_{1/3} ( 9*3) =\\= - 3*( - 2) - \frac{5}{2}*3 - log_{1/3} 27 = 6 - 7,5 - ( - 3) = 9 - 7,5 = 1,5[/tex]
c ) [tex]log_{1/3} 162 + log_{1/3} 21 - 3 log_{1/3} 84 = log_{1/3} 162^6 + log_{1/3} 21^3 - log_{1/3} 84^3 =[/tex]
[tex]= log_{1/3} \frac{162^6*21^3}{84^3} = log_{1/3} \frac{162^6}{64}[/tex] [tex]= 3* log_{3^{-1}} \frac{162^2}{4} = -3 log_3 6561[/tex]
-------------------------------------------------------------------------------------
3.
f ( x) = [tex]log_{1/16} x[/tex] < [tex]\frac{1}{2} ; \sqrt{2} >[/tex]
Funkcja jest malejąca, więc
[tex]y_{max} = f ( 1/2) = log_{1/16} \frac{1}{2} = \frac{1}{4}[/tex] bo [tex]( \frac{1}{16} )^{1/4} = \sqrt[4]{\frac{1}{16} } = \frac{1}{2}[/tex]
------------------------------------------
[tex]y_{min} = f (\sqrt{2} ) = log_{1/16} \sqrt{2} = log_{1/16} 2^{1/2} = \frac{1}{2} *( - \frac{1}{4} ) = - \frac{1}{8}[/tex]
-----------------------------------------------------------------------------------
4.
f ( x) = [tex]log_{1/2} ( x + 1 ) - 5[/tex]
x + 1 > 0 ⇒ x > - 1
Df = ( - 1; + ∞ )
-----------------------
Asymptota pionowa : x = - 1
-------------------------------------------------
Funkcja jest malejąca.
---------------------------------------
f ( - 1/2) = [tex]log_{1/2} \frac{1}{2} - 5 = 1 - 5 = - 4[/tex] A = ( -1/2 , - 4 )
f ( 0 ) = [tex]log_{1/2} 1 - 5 = 0 - 5 = - 5[/tex] B = ( 0, - 5 )
f (1 ) = [tex]log_{1/2} 2 - 5 = - 1 - 5 = -6[/tex] C = ( 1, - 6 )
f ( 3) = [tex]log_{1/2} 4 - 5 = - 2 - 5 = - 7[/tex] D = ( 3 , - 7 )
Narysuj wykres - linia przechodząca przez punkty A, B, C, D
===========================================================
5.
a ) [tex]3^{- 3- 0,4}* 9^{3 + 0,2} = 3^{- 3 - 0,4}* (3^2)^{ 3 + 0,2} = 3^{-3,4}*3^{6,4} = 3^3 = 27[/tex]
b ) [tex]( \frac{1}{3} )^{-5} : 27^{0,3} : \frac{1}{3^{10}} = 3^5 : ( 3^3)^{0,3 }: 3^{-10} = 3^5 : 3^{0,9} : 3^{-10} =[/tex]
[tex]= 3^{5 - 0,9} : 3^{-10} = 3^{4,1} : 3^{- 10} = 3^{4,1 - ( - 10)} = 3^{14,1}[/tex]
c ) [tex][ ( 81^{-3/8})^{4/3}]^{-2} = [ 81^{-3/8*4/3}]^{-2} = [ 81^{-1/2}]^{-2} = 81^{1} = 81[/tex]
-------------------------------------------------------------------------------------------------
6.
[tex]log_{16} x = \frac{log_3 1/27 + log_3 ( 3\sqrt{3} )}{log_2 16 - log_2 8} = \frac{- 3 +1.5}{log_2 ( 16 : 8 )}[/tex] [tex]= \frac{-1,5}{log_2 2} = - 1,5[/tex]
x = [tex]16^{-1,5} = \frac{1}{16^{1,5}} = \frac{1}{16*4} = \frac{1}{64}[/tex]
---------------------------------------------
7.
a ) [tex]f ( x) = log_9 x[/tex] P = ( [tex]\frac{1}{\sqrt{3} } ,[/tex] t )
więc [tex]log_9 \frac{1}{\sqrt{3} } = log_{3^2} 3^{-1/2} = \frac{1}{2} *(-\frac{1}{2} )*log_3 3= - \frac{1}{4} *1 = - \frac{1}{4}[/tex]
t = - [tex]\frac{1}{4}[/tex]
-------------------------
b ) [tex]f ( x) = log_{1/2} x[/tex] P = ( [tex]\frac{1}{t}[/tex] , - 3 )
więc
[tex]log_{1/2} \frac{1}{t} = - 3[/tex] ⇒ [tex]\frac{1}{t} = ( 1/ 2)^{-3} = 2^3 = 8\\t = \frac{1}{8}[/tex]
===================================
8.
P = ( - 1 [tex]\frac{1}{3}[/tex] , p ) Q = ( q , 125 )
f ( x) = ( 5 √5 [tex])^x[/tex]
więc
p = ( 5 [tex]\sqrt{5} )^{-4/3} = ( 5 ^{3/2})^{-4/3} = 5^{- 2} = \frac{1}{5^2} = \frac{1}{25}[/tex]
----------------------------------------------------------------
oraz
[tex]( 5[/tex] [tex]\sqrt{5} )^q = 125 = 5^3[/tex]
[tex](5^{1,5})^q = 5^3\\1,5 q = 3\\q = 2[/tex]
=========
Szczegółowe wyjaśnienie: