Wszystkie zadania maja byc rozwiazane inaczej zglaszam blad/spam ;] zadnych durnych odpowiedzi nie akceptuje ;]. prosze o wszystkie wzory z jakich korzystacie i oczywiscie dokladne obliczenia !
1. Linkę kauczukową zmierzono w temperaturze -20*C i otrzymano dlugość 50m. oblicz dlugość jaka bedzie w temperaturze 30*C.
2. do wanny wlano 5l wody o temp. 76*. oblicz ile litrow wody o temp 10*C nalezy dolac do wanny aby temp. koncowa wynosila 36*C
3. opone wzieta z piwnicy o temp 5*C zamontowano w samochodzie w upalny dzien . cisnienie powietrza wzroslo o 10% oblicz temp. powietrza w oponie
l2 = l1(1 + αΔt), gdzie α = rozszerzalność liniowa kauczuku, która wynosi ok. 0,77·10-4 1/K. l2 = 50m {1 + α[30°C - (-20°C)]} = 50 (1 + 50*0,77·10⁻⁴) [m * K * (1/K)=m] l2 ≈ 50 * 1,00385 = 50,19 m Czyli wydłużył się o około 19 cm
Odp. Ok. 50,19 m
2. V1 = 5l t1 = 76°C t2 = 10°C t = 36°C d=100kg/m³=1kg/l -gęstość wody c=4190J/(kg*K) - ciepło właściwe wody
Szukane: V2
Równanie równowagi termodynamicznej (ciepło pobrane jest równe ciepłu oddanemu albo suma ciepeł w układzie jest równa 0) Q1 = Q2 m1cΔt' = m2cΔt'' dV1c(t1 - t) = dV2c(t - t2) V1(t1 - t) = V2(t - t2) V2 = V1(t1 - t)/(t- t2) V2 = 5 *(76-36)/(36-10)=5*40*/26=7,69 l
3. Dane: p2=1,1p1 T1=5°C=273,15+5=278,15 K Szukane: T2
Zakładamy, że w oponie zaszła przemiana izochoryczna, czyli objętość V=const, chociaż w praktyce opona mogła nieznacznie zwiększyć objętość. Wtedy z równania Clapeyrona dla gazów doskonałych, przy czym powietrze można za taki uważać: p1V/T1 = p2V/T2, p1/T1 = 1,1p1/T2 T2 = 1,1p1*T1/p1 = 1,1T1 = 1,1 * 278,15 K T2 = 305,97 K ≈ 32,82 °C
t1=-20°C
l1 = 50 m
t2 = 30°C
Szukane:
l2
l2 = l1(1 + αΔt), gdzie α = rozszerzalność liniowa kauczuku, która wynosi ok. 0,77·10-4 1/K.
l2 = 50m {1 + α[30°C - (-20°C)]} = 50 (1 + 50*0,77·10⁻⁴) [m * K * (1/K)=m]
l2 ≈ 50 * 1,00385 = 50,19 m
Czyli wydłużył się o około 19 cm
Odp. Ok. 50,19 m
2.
V1 = 5l
t1 = 76°C
t2 = 10°C
t = 36°C
d=100kg/m³=1kg/l -gęstość wody
c=4190J/(kg*K) - ciepło właściwe wody
Szukane:
V2
Równanie równowagi termodynamicznej (ciepło pobrane jest równe ciepłu oddanemu albo suma ciepeł w układzie jest równa 0)
Q1 = Q2
m1cΔt' = m2cΔt''
dV1c(t1 - t) = dV2c(t - t2)
V1(t1 - t) = V2(t - t2)
V2 = V1(t1 - t)/(t- t2)
V2 = 5 *(76-36)/(36-10)=5*40*/26=7,69 l
3.
Dane:
p2=1,1p1
T1=5°C=273,15+5=278,15 K
Szukane:
T2
Zakładamy, że w oponie zaszła przemiana izochoryczna, czyli objętość V=const, chociaż w praktyce opona mogła nieznacznie zwiększyć objętość.
Wtedy z równania Clapeyrona dla gazów doskonałych, przy czym powietrze można za taki uważać:
p1V/T1 = p2V/T2,
p1/T1 = 1,1p1/T2
T2 = 1,1p1*T1/p1 = 1,1T1 = 1,1 * 278,15 K
T2 = 305,97 K ≈ 32,82 °C
Odp. ok. 33 °C