[tex]f(x) = 6 {x}^{5} + 12 {x}^{3} - 2 {x}^{2} + 5x - 10 \\ [/tex]
turunan pertama[tex]f'(x) =5 \times 6 {x}^{5} + 3 \times 12 {x}^{3} - 2 \times 2 {x}^{2 - 1} + 1 \times 5 {x}^{1 - 1} - 0 \\ [/tex]
[tex]f'(x) =30 {x}^{5} + 36 {x}^{3} - 4x + 5[/tex]
[tex]f(x) = 6 {x}^{ - 5} + 12 {x}^{ - 3} + 2 {x}^{ - 2} + 5 {x}^{ - 1 } \\ [/tex]
turunan pertama
[tex]f'(x) = ( - 5) \times 6 {x}^{ - 5 - 1} + ( - 3) \times 12 {x}^{ - 3 - 1} + ( - 2) \times 2 {x}^{ - 2 - 1} + ( - 1) \times 5 {x}^{ - 1 - 1} \\ [/tex]
[tex]f'(x) = - 30 {x}^{ - 6} - 36 {x}^{ - 4} - 4 {x}^{ - 3} - 5 {x}^{ - 2} \\ [/tex]
[tex]f(x) = \frac{6}{5} {x}^{5} + \frac{2}{3} {x}^{3} + \frac{1}{2} {x}^{4} [/tex]
[tex]f'(x) = \cancel5 \times \frac{6}{ \cancel5} {x}^{5 - 1} + \cancel3 \times \frac{2}{ \cancel3} {x}^{3 - 1} + 4 \times \frac{1}{2} {x}^{4 - 1} \\ [/tex]
[tex]f'(x) =6 {x}^{4} + 2 {x}^{2} + 2 {x}^{3} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1
[tex]f(x) = 6 {x}^{5} + 12 {x}^{3} - 2 {x}^{2} + 5x - 10 \\ [/tex]
turunan pertama[tex]f'(x) =5 \times 6 {x}^{5} + 3 \times 12 {x}^{3} - 2 \times 2 {x}^{2 - 1} + 1 \times 5 {x}^{1 - 1} - 0 \\ [/tex]
[tex]f'(x) =30 {x}^{5} + 36 {x}^{3} - 4x + 5[/tex]
2
[tex]f(x) = 6 {x}^{ - 5} + 12 {x}^{ - 3} + 2 {x}^{ - 2} + 5 {x}^{ - 1 } \\ [/tex]
turunan pertama
[tex]f'(x) = ( - 5) \times 6 {x}^{ - 5 - 1} + ( - 3) \times 12 {x}^{ - 3 - 1} + ( - 2) \times 2 {x}^{ - 2 - 1} + ( - 1) \times 5 {x}^{ - 1 - 1} \\ [/tex]
[tex]f'(x) = - 30 {x}^{ - 6} - 36 {x}^{ - 4} - 4 {x}^{ - 3} - 5 {x}^{ - 2} \\ [/tex]
3
[tex]f(x) = \frac{6}{5} {x}^{5} + \frac{2}{3} {x}^{3} + \frac{1}{2} {x}^{4} [/tex]
turunan pertama
[tex]f'(x) = \cancel5 \times \frac{6}{ \cancel5} {x}^{5 - 1} + \cancel3 \times \frac{2}{ \cancel3} {x}^{3 - 1} + 4 \times \frac{1}{2} {x}^{4 - 1} \\ [/tex]
[tex]f'(x) =6 {x}^{4} + 2 {x}^{2} + 2 {x}^{3} [/tex]