Jawab:
(x,y,z) = (2,-1,1)
Penjelasan dengan langkah-langkah:
Kurangi persamaan (2) - (1)
<=> (2x + y + z) - (x - y + z) = 4 - 4
<=> x + 2y = 0
<=> x = -2y ... (4)
Substitusikan persamaan (4) ke (3)
<=> 3(-2y) + 2y - 3z = 1
<=> -6y + 2y - 3z = 1
<=> -4y - 3z = 1
<=> 4y + 3z = -1 ... (5)
Substitusikan persamaan (4) ke (1)
<=> -2y - y + z = 4
<=> -3y + z = 4 ... (6)
Eliminasi persamaan dengan kurangi (5) - 3(3)
<=> 4y + 3z - 3(-3y + z) = -1 - 3.4
<=> 4y + 3z + 9y - 3z = -1 - 12
<=> 13y = -13
<=> y = -1 ... (7)
Substitusikan (7) ke (4)
<=> x = -2y = -2(-1) = 2
Substitusikan (7) ke (6)
<=> -3y + z = 4
<=> z = 3y + 4 = 3(-1) + 4 = -3 + 4 = 1
Jadi, solusinya adalah (x,y,z) = (2,-1,1)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
(x,y,z) = (2,-1,1)
Penjelasan dengan langkah-langkah:
Kurangi persamaan (2) - (1)
<=> (2x + y + z) - (x - y + z) = 4 - 4
<=> x + 2y = 0
<=> x = -2y ... (4)
Substitusikan persamaan (4) ke (3)
<=> 3(-2y) + 2y - 3z = 1
<=> -6y + 2y - 3z = 1
<=> -4y - 3z = 1
<=> 4y + 3z = -1 ... (5)
Substitusikan persamaan (4) ke (1)
<=> -2y - y + z = 4
<=> -3y + z = 4 ... (6)
Eliminasi persamaan dengan kurangi (5) - 3(3)
<=> 4y + 3z - 3(-3y + z) = -1 - 3.4
<=> 4y + 3z + 9y - 3z = -1 - 12
<=> 13y = -13
<=> y = -1 ... (7)
Substitusikan (7) ke (4)
<=> x = -2y = -2(-1) = 2
Substitusikan (7) ke (6)
<=> -3y + z = 4
<=> z = 3y + 4 = 3(-1) + 4 = -3 + 4 = 1
Jadi, solusinya adalah (x,y,z) = (2,-1,1)