RiskaDamayanti15
1.Sifat Simetris : Misalkan R sebuah relasi pada sebuah himpunan P. Relasi R dikatakan bersifat simetris, apabila untuk setiap (x,y) € R berlaku (y,x) € R.
Contoh : Diberikan himpunan P ={1,2,3}. Didefinisikan relasi R pada himpunan P dengan R ={(1,1), (1,2), (1,3), (2,2), (2,1), (3,1), (3,3)}. Relasi R tersebut bersifat simetris untuk setiap (x,y) € R, berlaku (y,x) € R.
2.Sifat Transitif : Misalkan R sebuah relasi pada sebuah himpunan P. Relasi R bersifat Transitif, apabila untuk setiap (x,y) € R dan (y,z) € R maka berlaku (x,z) € R.
Contoh : Diberikan himpunan P ={1,2,3}. Didefinisikan relasi pada himpunan P dengan hasil relasi adalah himpunan R= {(1,1), (1,2), (1,3), (2,2), (2,1), (3,1), (3,3)}. Relasi R tersebut bersifat Transitif sebab (x,y) € R din (y,z) € R berlaku (x,z) € R.
3.Sifat Antisimetris Misalkan R sebuah relasi pada sebuah himpunan P. Relasi R dikatakan bersifat antisimetris, apabila untuk setiap (x,y) € R dan (y,x) € R berlaku x=y.
Contoh : Diberikan himpunan C = {2,4,5}. Didefinisikan relasi R pada himpunan C dengan R = {(a,b) € a kelipatan b, ab € C} sehingga diperoleh R = {(2,2), (4,4), (5,5), (4,2)}. Relasi R tersebut bersifat antisimetris.
4.Sifat Ekuivalensi Misalkan R sebuah relasi pada sebuah himpunan P. Relasi R disebut relasi ekivalensi jika dan hanya jika relasi R memenuhi sifat refleksif, simetris, dan transitif.
Contoh : Dibmerupakan relasi ekivalensierikan himpunan P = {1,2,3}. Didefinisikan relasi pada himpunan P dengan R={(1,1),(1,2),(2,2),(2,1),(3,3)}. Relasi R tersebut bersifat refleksif, simetris din transitif. Oleh karena itu relasi R merupakan relasi ekivalensi.
Misalkan R sebuah relasi pada sebuah himpunan P. Relasi R dikatakan bersifat simetris, apabila untuk setiap (x,y) € R berlaku (y,x) € R.
Contoh : Diberikan himpunan P ={1,2,3}. Didefinisikan relasi R pada himpunan P dengan R ={(1,1), (1,2), (1,3), (2,2), (2,1), (3,1), (3,3)}. Relasi R tersebut bersifat simetris untuk setiap (x,y) € R, berlaku (y,x) € R.
2.Sifat Transitif :
Misalkan R sebuah relasi pada sebuah himpunan P. Relasi R bersifat Transitif, apabila untuk setiap (x,y) € R dan (y,z) € R maka berlaku (x,z) € R.
Contoh : Diberikan himpunan P ={1,2,3}. Didefinisikan relasi pada himpunan P dengan hasil relasi adalah himpunan R= {(1,1), (1,2), (1,3), (2,2), (2,1), (3,1), (3,3)}. Relasi R tersebut bersifat Transitif sebab (x,y) € R din (y,z) € R berlaku (x,z) € R.
3.Sifat Antisimetris
Misalkan R sebuah relasi pada sebuah himpunan P. Relasi R dikatakan bersifat antisimetris, apabila untuk setiap (x,y) € R dan (y,x) € R berlaku x=y.
Contoh : Diberikan himpunan C = {2,4,5}. Didefinisikan relasi R pada himpunan C dengan R = {(a,b) € a kelipatan b, ab € C} sehingga diperoleh R = {(2,2), (4,4), (5,5), (4,2)}. Relasi R tersebut bersifat antisimetris.
4.Sifat Ekuivalensi
Misalkan R sebuah relasi pada sebuah himpunan P. Relasi R disebut relasi ekivalensi jika dan hanya jika relasi R memenuhi sifat refleksif, simetris, dan transitif.
Contoh : Dibmerupakan relasi ekivalensierikan himpunan P = {1,2,3}. Didefinisikan relasi pada himpunan P dengan R={(1,1),(1,2),(2,2),(2,1),(3,3)}. Relasi R tersebut bersifat refleksif, simetris din transitif. Oleh karena itu relasi R merupakan relasi ekivalensi.