Odpowiedź:
Szczegółowe wyjaśnienie:
Korzystamy ze wzorów skróconego mnożenia:
(a + b)² = a² + 2ab + b²
(a - b)² = a² - 2ab + b²
(a + b)(a - b) = a² - b²
5.
[tex](2a+3)^{2}-3(a+3)(a-3) = (2a)^{2}+2\cdot2a\cdot 3 + 3^{2} -3(a^{2}-3^{2}) =\\\\= 4a^{2}+12a+9 - 3(a^{2}-9) =4a^{2}+12a+9-3a^{2}+27 = a^{2}+12a+36\\\\\\dla \ \ a = -\sqrt{2}\\\\a^{2}+12a+36 = (-\sqrt{2})^{2}+12\cdot(-\sqrt{2})+36 = 2-12\sqrt{2}+36 = \boxed{38-12\sqrt{2}}[/tex]
4.
[tex](\sqrt{5}-3)^{2}{-(2\sqrt{5}-3)^{2}+(4-\sqrt{5})(4+\sqrt{5})=[/tex]
[tex]=(\sqrt{5})^{2}-2\cdot\sqrt{5}\cdot3 + 3^{2} -[(2\sqrt{5})^{2}-2\cdot2\sqrt{5}\cdot3 + 3^{2}]+[4^{2}-(\sqrt{5})^{2}]=\\\\=5-6\sqrt{5}+9-(4\cdot5-12\sqrt{5}+9)+16-5 =14-6\sqrt{5}-(20-12\sqrt{5}+9)+11=\\\\=14-6\sqrt{5}-29+12\sqrt{5}+11 = \boxed{6\sqrt{5}-4}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
Szczegółowe wyjaśnienie:
Korzystamy ze wzorów skróconego mnożenia:
(a + b)² = a² + 2ab + b²
(a - b)² = a² - 2ab + b²
(a + b)(a - b) = a² - b²
5.
[tex](2a+3)^{2}-3(a+3)(a-3) = (2a)^{2}+2\cdot2a\cdot 3 + 3^{2} -3(a^{2}-3^{2}) =\\\\= 4a^{2}+12a+9 - 3(a^{2}-9) =4a^{2}+12a+9-3a^{2}+27 = a^{2}+12a+36\\\\\\dla \ \ a = -\sqrt{2}\\\\a^{2}+12a+36 = (-\sqrt{2})^{2}+12\cdot(-\sqrt{2})+36 = 2-12\sqrt{2}+36 = \boxed{38-12\sqrt{2}}[/tex]
4.
[tex](\sqrt{5}-3)^{2}{-(2\sqrt{5}-3)^{2}+(4-\sqrt{5})(4+\sqrt{5})=[/tex]
[tex]=(\sqrt{5})^{2}-2\cdot\sqrt{5}\cdot3 + 3^{2} -[(2\sqrt{5})^{2}-2\cdot2\sqrt{5}\cdot3 + 3^{2}]+[4^{2}-(\sqrt{5})^{2}]=\\\\=5-6\sqrt{5}+9-(4\cdot5-12\sqrt{5}+9)+16-5 =14-6\sqrt{5}-(20-12\sqrt{5}+9)+11=\\\\=14-6\sqrt{5}-29+12\sqrt{5}+11 = \boxed{6\sqrt{5}-4}[/tex]