Respuesta:
1)[tex]\sqrt{3}[/tex]
2)0
3)[tex]2[/tex]
Explicación paso a paso:
1)x+y=30°
sen(x+3y)=sen(x+y+2y)=sen(30+2y)
sen(y+3x)=sen(x+y+2x)=sen(30+2x)
Piden:[tex]\frac{sen(x+3y)+sen(3x+y)}{sen2x+sen2y}[/tex]
Por transformación de suma de senos
numerador:
[tex]senA+senB=2sen(\frac{A+B}{2})cos(\frac{A-B}{2})\\\\sen(x+3y)+sen(3x+y)=sen(30+2y)+sen(30+2x)=\\\\2sen(\frac{30+2y+30+2x}{2})cos(\frac{30+2y-(30+2x)}{2})=2sen(\frac{60+2x+2y}{2})cos(\frac{2y-2x}{2})=\\\\2sen(30+x+y)cos(y-x)=2sen(30+30)cos(y-x)=2sen60cos(y-x)[/tex]
Denominador:
[tex]sen2x+sen2y=2sen(\frac{2x+2y}{2})cos(\frac{2x-2y}{2})=2sen(x+y)cos(x-y)\\\\\\=2sen(30)cos(x-y)\\[/tex]
Sabemos que: cos(-x)=cos(x)
entonces cos(y-x)=cos(-(y-x))=cos(x-y)
sen60: [tex]\frac{\sqrt{3} }{2}[/tex], sen30: [tex]\frac{1}{2}[/tex]
H=
[tex]\frac{2sen60cos(y-x)}{2sen30cos(x-y)} =\frac{sen60(x-y)}{sen30(x-y)}=\frac{sen60}{sen30}=\frac{\frac{\sqrt{3} }{2} }{\frac{1}{2} }=\sqrt{3}[/tex]
2)H=cos20+cos100+cos220=cos20+cos220+cos110
Se aplica transformación de la suma de cosenos:
[tex]cosA+cosB=2cos(\frac{A+B}{2})cos(\frac{A-B}{2})\\\\cos20+cos220=2cos(\frac{20+220}{2})cos(\frac{20-220}{2})=2cos(\frac{240}{2})cos(\frac{-200}{2})\\\\2cos(120)(-100), cos(-100)=cos(100)\\\\2cos(120)(-100)=2cos(120)(100)\\[/tex]
cos120: [tex]-\frac{1}{2}[/tex]
En H:
[tex]2cos(120)cos(100)+cos100=2(-\frac{1}{2})cos100+cos100=-cos100+cos100=0[/tex]
3)x=y+30°
P: [tex]\frac{sen(x+y)}{sen^{2}x -sen^{2}y }[/tex]
Por Identidad auxiliar de suma de dos ángulos
[tex]sen^{2}x-sen^{2}y=sen(x+y)sen(x-y)[/tex]
En P:
x=y+30 , x-y=30
sen30= 1/2
[tex]\frac{sen(x+y)}{sen(x+y)sen(x-y)} =\frac{1}{sen(x-y)}=\frac{1}{sen30}=\frac{1}{\frac{1}{2} }=1*2=2[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Respuesta:
1)[tex]\sqrt{3}[/tex]
2)0
3)[tex]2[/tex]
Explicación paso a paso:
1)x+y=30°
sen(x+3y)=sen(x+y+2y)=sen(30+2y)
sen(y+3x)=sen(x+y+2x)=sen(30+2x)
Piden:[tex]\frac{sen(x+3y)+sen(3x+y)}{sen2x+sen2y}[/tex]
Por transformación de suma de senos
numerador:
[tex]senA+senB=2sen(\frac{A+B}{2})cos(\frac{A-B}{2})\\\\sen(x+3y)+sen(3x+y)=sen(30+2y)+sen(30+2x)=\\\\2sen(\frac{30+2y+30+2x}{2})cos(\frac{30+2y-(30+2x)}{2})=2sen(\frac{60+2x+2y}{2})cos(\frac{2y-2x}{2})=\\\\2sen(30+x+y)cos(y-x)=2sen(30+30)cos(y-x)=2sen60cos(y-x)[/tex]
Denominador:
[tex]sen2x+sen2y=2sen(\frac{2x+2y}{2})cos(\frac{2x-2y}{2})=2sen(x+y)cos(x-y)\\\\\\=2sen(30)cos(x-y)\\[/tex]
Sabemos que: cos(-x)=cos(x)
entonces cos(y-x)=cos(-(y-x))=cos(x-y)
sen60: [tex]\frac{\sqrt{3} }{2}[/tex], sen30: [tex]\frac{1}{2}[/tex]
H=
[tex]\frac{2sen60cos(y-x)}{2sen30cos(x-y)} =\frac{sen60(x-y)}{sen30(x-y)}=\frac{sen60}{sen30}=\frac{\frac{\sqrt{3} }{2} }{\frac{1}{2} }=\sqrt{3}[/tex]
2)H=cos20+cos100+cos220=cos20+cos220+cos110
Se aplica transformación de la suma de cosenos:
[tex]cosA+cosB=2cos(\frac{A+B}{2})cos(\frac{A-B}{2})\\\\cos20+cos220=2cos(\frac{20+220}{2})cos(\frac{20-220}{2})=2cos(\frac{240}{2})cos(\frac{-200}{2})\\\\2cos(120)(-100), cos(-100)=cos(100)\\\\2cos(120)(-100)=2cos(120)(100)\\[/tex]
cos120: [tex]-\frac{1}{2}[/tex]
En H:
[tex]2cos(120)cos(100)+cos100=2(-\frac{1}{2})cos100+cos100=-cos100+cos100=0[/tex]
3)x=y+30°
P: [tex]\frac{sen(x+y)}{sen^{2}x -sen^{2}y }[/tex]
Por Identidad auxiliar de suma de dos ángulos
[tex]sen^{2}x-sen^{2}y=sen(x+y)sen(x-y)[/tex]
Denominador:
[tex]sen^{2}x-sen^{2}y=sen(x+y)sen(x-y)[/tex]
En P:
x=y+30 , x-y=30
sen30= 1/2
[tex]\frac{sen(x+y)}{sen(x+y)sen(x-y)} =\frac{1}{sen(x-y)}=\frac{1}{sen30}=\frac{1}{\frac{1}{2} }=1*2=2[/tex]