Respuesta:
Area= 32.
Explicación paso a paso:
Aplicando el teorema de Pitágoras en el cuadrado de 8 cm de diagonal, tenemos que:
[tex] {8}^{2} = 2 \times {l}^{2} [/tex]
y su área se calcula:
[tex]area = l \times l[/tex]
De la primera ecuación obtenemos el valor del lado:
[tex] {l}^{2} = \frac{ {8}^{2} }{2} = \frac{64}{2} = 32[/tex]
[tex]l = \sqrt{32} = 5.657 \: cm[/tex]
El área es:
[tex]area = {l}^{2} = { (\sqrt{32} )}^{2} [/tex]
[tex]area = 32 \: {cm}^{2} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
Area= 32.
Explicación paso a paso:
Aplicando el teorema de Pitágoras en el cuadrado de 8 cm de diagonal, tenemos que:
[tex] {8}^{2} = 2 \times {l}^{2} [/tex]
y su área se calcula:
[tex]area = l \times l[/tex]
De la primera ecuación obtenemos el valor del lado:
[tex] {l}^{2} = \frac{ {8}^{2} }{2} = \frac{64}{2} = 32[/tex]
[tex]l = \sqrt{32} = 5.657 \: cm[/tex]
El área es:
[tex]area = {l}^{2} = { (\sqrt{32} )}^{2} [/tex]
[tex]area = 32 \: {cm}^{2} [/tex]