Zadanie 3.
a)
[tex]|x-1|=2\\x-1=2\ \vee\ x-1=-2\\x=3\ \vee\ x=-1\\x\in\{-1,3\}[/tex]
b)
[tex]|3x+7|=2\\3x+7=2\ \vee\ 3x+7=-2\\3x=-5\ |:3\ \vee\ 3x=-9\ |:3\\x=-\frac{5}{3}\ \vee\ x=-3\\x=-1\frac{2}{3}\ \vee\ x=-3\\x\in\left\{-3,-1\frac{2}{3}\right\}[/tex]
c)
[tex]|-8x+5|=11\\-8x+5=11\ \vee\ -8x+5=-11\\-8x=6\ |:(-8)\ \vee\ -8x=-16\ |:(-8)\\x=-\frac{6}{8}\ \vee\ x=2\\x=-\frac{3}{4}\ \vee\ x=2\\x\in\left\{-\frac{3}{4},2\right\}[/tex]
d)
[tex]|2x-6|=0\\2x-6=0\\2x=6\ |:2\\x=3[/tex]
Zadanie 4.
[tex]|5-x|\leq 2\\5-x\leq 2\ \land\ 5-x\geq -2\\-x\leq -3\ |:(-1)\ \land\ -x\geq -7\ |:(-1)\\x\geq 3\ \land x\leq 7\\x\in\left < 3,7\right >[/tex]
[tex]|4+x|\geq 3\\4+x\geq 3\ \vee\ 4+x\leq -3\\x\geq -1\ \vee\ x\leq -7\\x\in\left(-\infty,-7\right > \cup\left < -1,+\infty\right)[/tex]
[tex]-2|x-0,3|+3 > 0\\-2|x-0,3| > -3\ |:(-2)\\|x-0,3| < 1,5\\x-0,3 < 1,5\ \land\ x-0,3 > -1,5\\x < 1,8\ \land x > -1,2\\x\in(-1,2;1,8)[/tex]
[tex]|12x-2| < 50\\12x-2 < 50\ \land 12x-2 > -50\\12x < 52\ |:12\ \land\ 12x > -48\ |:12\\x < 4\frac{4}{12}\ \land\ x > -4\\x < 4\frac{1}{3}\ \land\ x > -4\\x\in\left(-4,4\frac{1}{3}\right)[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Zadanie 3.
a)
[tex]|x-1|=2\\x-1=2\ \vee\ x-1=-2\\x=3\ \vee\ x=-1\\x\in\{-1,3\}[/tex]
b)
[tex]|3x+7|=2\\3x+7=2\ \vee\ 3x+7=-2\\3x=-5\ |:3\ \vee\ 3x=-9\ |:3\\x=-\frac{5}{3}\ \vee\ x=-3\\x=-1\frac{2}{3}\ \vee\ x=-3\\x\in\left\{-3,-1\frac{2}{3}\right\}[/tex]
c)
[tex]|-8x+5|=11\\-8x+5=11\ \vee\ -8x+5=-11\\-8x=6\ |:(-8)\ \vee\ -8x=-16\ |:(-8)\\x=-\frac{6}{8}\ \vee\ x=2\\x=-\frac{3}{4}\ \vee\ x=2\\x\in\left\{-\frac{3}{4},2\right\}[/tex]
d)
[tex]|2x-6|=0\\2x-6=0\\2x=6\ |:2\\x=3[/tex]
Zadanie 4.
a)
[tex]|5-x|\leq 2\\5-x\leq 2\ \land\ 5-x\geq -2\\-x\leq -3\ |:(-1)\ \land\ -x\geq -7\ |:(-1)\\x\geq 3\ \land x\leq 7\\x\in\left < 3,7\right >[/tex]
b)
[tex]|4+x|\geq 3\\4+x\geq 3\ \vee\ 4+x\leq -3\\x\geq -1\ \vee\ x\leq -7\\x\in\left(-\infty,-7\right > \cup\left < -1,+\infty\right)[/tex]
c)
[tex]-2|x-0,3|+3 > 0\\-2|x-0,3| > -3\ |:(-2)\\|x-0,3| < 1,5\\x-0,3 < 1,5\ \land\ x-0,3 > -1,5\\x < 1,8\ \land x > -1,2\\x\in(-1,2;1,8)[/tex]
d)
[tex]|12x-2| < 50\\12x-2 < 50\ \land 12x-2 > -50\\12x < 52\ |:12\ \land\ 12x > -48\ |:12\\x < 4\frac{4}{12}\ \land\ x > -4\\x < 4\frac{1}{3}\ \land\ x > -4\\x\in\left(-4,4\frac{1}{3}\right)[/tex]