Diberikan sistem persamaan tiga variabel sebagai berikut.
[tex] \small \begin{cases} 2x-4y+3z = 8 \\ x+2y-z =5 \\ -2x-3y+z = -9 \end{cases} [/tex]
Nyatakan sistem persamaan linear tiga variabel dalam bentuk matriks:
[tex] \small\begin{pmatrix} 2&-4&3 \\ 1&2&-1 \\ -2&-3&1 \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 8\\5\\-9 \end{pmatrix} [/tex]
Tentukan nilai [tex] D: [/tex]
[tex] \small\begin{aligned} D &= \begin{array}{|ccc|cc} 2&-4&3&2&-4 \\ 1&2&-1&1&2 \\ -2&-3&1&-2&-3 \end{array} \\ &= [\;2(2)(1)+(-4)(-1)(-2)+3(1)(-3)\;] \\ &\quad -[\;3(2)(-2)+2(-1)(-3)+(-4)(1)(1)\;] \\ &= [\;4-8-9\;]-[\;-12+6-4\;] \\ &= -13-(-10) \\ &= -3\end{aligned} [/tex]
Tentukan nilai [tex] D_x: [/tex]
[tex]\small \begin{aligned} D_x &= \begin{array}{|ccc|cc} 8&-4&3&8&-4 \\ 5&2&-1&5&2 \\ -9&-3&1&-9&-3 \end{array} \\ &= [8(2)(1)+(-4)(-1)(-9)+3(5)(-3)] \\ &\quad -[3(2)(-9)+8(-1)(-3)+(-4)(5)(1)] \\ &= [16-36-45]-[-54+24-20] \\ &= -65-(-50) \\ &= -15 \end{aligned} [/tex]
Tentukan nilai [tex] D_y: [/tex]
[tex]\small \begin{aligned} D_y &= \begin{array}{|ccc|cc} 2&8&3&2&8 \\ 1&5&-1&1&5 \\ -2&-9&1&-2&-9 \end{array} \\ &= [2(5)(1)+8(-1)(-2)+3(1)(-9)] \\ &\quad -[3(5)(-2)+2(-1)(-9)+8(1)(1)] \\ &= [10+16-27]-[-30+18+8] \\ &= -1-(-4) \\ &= 3 \end{aligned} [/tex]
Tentukan nilai [tex] D_z: [/tex]
[tex] \small\begin{aligned} D_z &= \begin{array}{|ccc|cc} 2&-4&8&2&-4 \\ 1&2&5&1&2 \\ -2&-3&-9&-2&-3 \end{array} \\ &= [2(2)(-9)+(-4)(5)(-2)+8(1)(-3)] \\ &\quad -[8(2)(-2)+2(5)(-3)+(-4)(1)(-9)] \\ &= [-36+40-24]-[-32-30+36] \\ &= -20-(-26) \\ &= 6 \end{aligned} [/tex]
Tentukan nilai [tex] x+y+z: [/tex]
[tex] \small\begin{aligned} x+y+z &= \frac{ D_x}{ D}+\frac{ D_y}{D }+\frac{D_z }{D } \\ &= \frac{-15 }{-3 }+\frac{ 3}{ -3}+\frac{ 6}{-3 } \\ &= 5-1-2 \\ &= 2\end{aligned} [/tex]
Jadi, jawaban yang tepat adalah [tex] A.\; 2. [/tex]
NB: Metode yang digunakan untuk menentukan determinan disini yaitu metode Sarrus.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Diberikan sistem persamaan tiga variabel sebagai berikut.
[tex] \small \begin{cases} 2x-4y+3z = 8 \\ x+2y-z =5 \\ -2x-3y+z = -9 \end{cases} [/tex]
Nyatakan sistem persamaan linear tiga variabel dalam bentuk matriks:
[tex] \small\begin{pmatrix} 2&-4&3 \\ 1&2&-1 \\ -2&-3&1 \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 8\\5\\-9 \end{pmatrix} [/tex]
Tentukan nilai [tex] D: [/tex]
[tex] \small\begin{aligned} D &= \begin{array}{|ccc|cc} 2&-4&3&2&-4 \\ 1&2&-1&1&2 \\ -2&-3&1&-2&-3 \end{array} \\ &= [\;2(2)(1)+(-4)(-1)(-2)+3(1)(-3)\;] \\ &\quad -[\;3(2)(-2)+2(-1)(-3)+(-4)(1)(1)\;] \\ &= [\;4-8-9\;]-[\;-12+6-4\;] \\ &= -13-(-10) \\ &= -3\end{aligned} [/tex]
Tentukan nilai [tex] D_x: [/tex]
[tex]\small \begin{aligned} D_x &= \begin{array}{|ccc|cc} 8&-4&3&8&-4 \\ 5&2&-1&5&2 \\ -9&-3&1&-9&-3 \end{array} \\ &= [8(2)(1)+(-4)(-1)(-9)+3(5)(-3)] \\ &\quad -[3(2)(-9)+8(-1)(-3)+(-4)(5)(1)] \\ &= [16-36-45]-[-54+24-20] \\ &= -65-(-50) \\ &= -15 \end{aligned} [/tex]
Tentukan nilai [tex] D_y: [/tex]
[tex]\small \begin{aligned} D_y &= \begin{array}{|ccc|cc} 2&8&3&2&8 \\ 1&5&-1&1&5 \\ -2&-9&1&-2&-9 \end{array} \\ &= [2(5)(1)+8(-1)(-2)+3(1)(-9)] \\ &\quad -[3(5)(-2)+2(-1)(-9)+8(1)(1)] \\ &= [10+16-27]-[-30+18+8] \\ &= -1-(-4) \\ &= 3 \end{aligned} [/tex]
Tentukan nilai [tex] D_z: [/tex]
[tex] \small\begin{aligned} D_z &= \begin{array}{|ccc|cc} 2&-4&8&2&-4 \\ 1&2&5&1&2 \\ -2&-3&-9&-2&-3 \end{array} \\ &= [2(2)(-9)+(-4)(5)(-2)+8(1)(-3)] \\ &\quad -[8(2)(-2)+2(5)(-3)+(-4)(1)(-9)] \\ &= [-36+40-24]-[-32-30+36] \\ &= -20-(-26) \\ &= 6 \end{aligned} [/tex]
Tentukan nilai [tex] x+y+z: [/tex]
[tex] \small\begin{aligned} x+y+z &= \frac{ D_x}{ D}+\frac{ D_y}{D }+\frac{D_z }{D } \\ &= \frac{-15 }{-3 }+\frac{ 3}{ -3}+\frac{ 6}{-3 } \\ &= 5-1-2 \\ &= 2\end{aligned} [/tex]
Jadi, jawaban yang tepat adalah [tex] A.\; 2. [/tex]
NB: Metode yang digunakan untuk menentukan determinan disini yaitu metode Sarrus.