Semoga dapat membantu ya
PEMBAHASAN
Eksponen
aᵐ × aⁿ = aᵐ⁺ⁿ
a⁰ = 1 ; a ≠ 0
__
[tex]\displaystyle \sf \: \frac{x {y}^{ - 2} + {x}^{ - 3} y}{ {x}^{2} {y}^{ - 1} - {x}^{ - 4} {y}^{3} } \\ \\ \displaystyle \sf = \: \frac{x {y}^{ - 2} + {x}^{ - 3} y}{ {x}^{2} {y}^{ - 1} - {x}^{ - 4} {y}^{3} } \times \frac{ {x}^{4} {y}^{2} }{ {x}^{4} {y}^{2} } \\ \\ \displaystyle \sf \: = \frac{ {x}^{1 + 4} {y}^{ - 2 + 2} + {x}^{ - 3 + 4} {y}^{1 + 2} }{ {x}^{2 + 4} {y}^{ - 1 + 2} - {x}^{ - 4 + 4} {y}^{3 + 2} } \\ \\ \displaystyle \sf = \: \boxed{\displaystyle \sf \: \frac{ {x}^{5} + {x} {y}^{3} }{ {x}^{6} {y} - {y}^{5} } }[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Semoga dapat membantu ya
PEMBAHASAN
Eksponen
aᵐ × aⁿ = aᵐ⁺ⁿ
a⁰ = 1 ; a ≠ 0
__
[tex]\displaystyle \sf \: \frac{x {y}^{ - 2} + {x}^{ - 3} y}{ {x}^{2} {y}^{ - 1} - {x}^{ - 4} {y}^{3} } \\ \\ \displaystyle \sf = \: \frac{x {y}^{ - 2} + {x}^{ - 3} y}{ {x}^{2} {y}^{ - 1} - {x}^{ - 4} {y}^{3} } \times \frac{ {x}^{4} {y}^{2} }{ {x}^{4} {y}^{2} } \\ \\ \displaystyle \sf \: = \frac{ {x}^{1 + 4} {y}^{ - 2 + 2} + {x}^{ - 3 + 4} {y}^{1 + 2} }{ {x}^{2 + 4} {y}^{ - 1 + 2} - {x}^{ - 4 + 4} {y}^{3 + 2} } \\ \\ \displaystyle \sf = \: \boxed{\displaystyle \sf \: \frac{ {x}^{5} + {x} {y}^{3} }{ {x}^{6} {y} - {y}^{5} } }[/tex]