Jawaban:
[tex]\displaystyle\sf~ \frac{3}{14}(4 - \sqrt{2}) [/tex]
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned}\displaystyle\sf~ \frac{3}{4 + \sqrt{2} } & = \displaystyle\sf~ \frac{3}{4 + \sqrt{2} } \times \frac{4 - \sqrt{2} }{4 - \sqrt{2} } \\ \\ & = \displaystyle\sf~ \frac{3(4 - \sqrt{2} )}{(4 + \sqrt{2})(4 - \sqrt{2} ) } \\ \\ & = \displaystyle\sf~ \frac{3(4 - \sqrt{2} )}{ {4}^{2} - {( \sqrt{2}) }^{2} } \\ \\ & = \displaystyle\sf~ \frac{3(4 - \sqrt{2} )}{16 - 2} \\ \\& = \displaystyle\sf~ \frac{3(4 - \sqrt{2} )}{14} \\ \\ & = \displaystyle\sf~ \frac{3}{14}(4 - \sqrt{2}) \end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
[tex]\displaystyle\sf~ \frac{3}{14}(4 - \sqrt{2}) [/tex]
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned}\displaystyle\sf~ \frac{3}{4 + \sqrt{2} } & = \displaystyle\sf~ \frac{3}{4 + \sqrt{2} } \times \frac{4 - \sqrt{2} }{4 - \sqrt{2} } \\ \\ & = \displaystyle\sf~ \frac{3(4 - \sqrt{2} )}{(4 + \sqrt{2})(4 - \sqrt{2} ) } \\ \\ & = \displaystyle\sf~ \frac{3(4 - \sqrt{2} )}{ {4}^{2} - {( \sqrt{2}) }^{2} } \\ \\ & = \displaystyle\sf~ \frac{3(4 - \sqrt{2} )}{16 - 2} \\ \\& = \displaystyle\sf~ \frac{3(4 - \sqrt{2} )}{14} \\ \\ & = \displaystyle\sf~ \frac{3}{14}(4 - \sqrt{2}) \end{aligned}[/tex]