Respuesta:
[tex]\frac{\sqrt{3} }{2}[/tex]
Explicación paso a paso:
[tex]BC = a=c\sqrt{3}[/tex]
[tex]AB=c[/tex]
[tex]AC =b[/tex]
[tex]Sen(\alpha ) = ?[/tex]
Por Pitágoras.
[tex]b^{2}=a^{2} +c^{2}[/tex]
[tex]b^{2} = (c\sqrt{3} )^{2} + (c)^{2} = c^{2} (3)+c^{2} = 3c^{2} +c^{2} =4c^{2}[/tex]
[tex]b^{2} =4c^{2}[/tex]
[tex]b = \sqrt{4c^{2} } = 2c[/tex]
[tex]Sen( \alpha ) =\frac{a}{b}[/tex]
[tex]Sen(\alpha )= \frac{c\sqrt{3} }{2c}[/tex]
[tex]Luego: Sen(\alpha ) = \frac{\sqrt{3} }{2}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
[tex]\frac{\sqrt{3} }{2}[/tex]
Explicación paso a paso:
[tex]BC = a=c\sqrt{3}[/tex]
[tex]AB=c[/tex]
[tex]AC =b[/tex]
[tex]Sen(\alpha ) = ?[/tex]
Por Pitágoras.
[tex]b^{2}=a^{2} +c^{2}[/tex]
[tex]b^{2} = (c\sqrt{3} )^{2} + (c)^{2} = c^{2} (3)+c^{2} = 3c^{2} +c^{2} =4c^{2}[/tex]
[tex]b^{2} =4c^{2}[/tex]
[tex]b = \sqrt{4c^{2} } = 2c[/tex]
[tex]Sen( \alpha ) =\frac{a}{b}[/tex]
[tex]Sen(\alpha )= \frac{c\sqrt{3} }{2c}[/tex]
[tex]Luego: Sen(\alpha ) = \frac{\sqrt{3} }{2}[/tex]