Respuesta:
[tex]A_{\overline{ABC}}=7[/tex]
Explicación paso a paso:
[tex]\overline{AB}=\sqrt{(x_A-x_B)\²+(y_A-y_B)\²}[/tex]
[tex]\overline{AB}=\sqrt{(1-6)\²+(9-8)\²}[/tex]
[tex]\overline{AB}=\sqrt{26}[/tex]
[tex]\overline{BC}=\sqrt{(x_B-x_C)\²+(y_B-y_C)\²}[/tex]
[tex]\overline{BC}=\sqrt{(6-12)\²+(8-4)\²}[/tex]
[tex]\overline{AB}=2\sqrt{13}[/tex]
[tex]\overline{CA}=\sqrt{(x_C-x_A)\²+(y_C-y_A)\²}[/tex]
[tex]\overline{CA}=\sqrt{(12-1)\²+(4-9)\²}[/tex]
[tex]\overline{CA}=\sqrt{146}[/tex]
[tex]A_{\overline{ABC}}=\sqrt{S_{\overline{ABC}}(S_{\overline{ABC}}-\overline{AB})(S_{\overline{ABC}}-\overline{BC})(S_{\overline{ABC}}-\overline{CA})}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Respuesta:
[tex]A_{\overline{ABC}}=7[/tex]
Explicación paso a paso:
[tex]\overline{AB}=\sqrt{(x_A-x_B)\²+(y_A-y_B)\²}[/tex]
[tex]\overline{AB}=\sqrt{(1-6)\²+(9-8)\²}[/tex]
[tex]\overline{AB}=\sqrt{26}[/tex]
[tex]\overline{BC}=\sqrt{(x_B-x_C)\²+(y_B-y_C)\²}[/tex]
[tex]\overline{BC}=\sqrt{(6-12)\²+(8-4)\²}[/tex]
[tex]\overline{AB}=2\sqrt{13}[/tex]
[tex]\overline{CA}=\sqrt{(x_C-x_A)\²+(y_C-y_A)\²}[/tex]
[tex]\overline{CA}=\sqrt{(12-1)\²+(4-9)\²}[/tex]
[tex]\overline{CA}=\sqrt{146}[/tex]
[tex]S_{\overline{ABC}}=\frac{\overline{AB}+\overline{BC}+\overline{CA}}{2}[/tex]
[tex]S_{\overline{ABC}}=\frac{\sqrt{26}+2\sqrt{13}+\sqrt{146}}{2}[/tex]
[tex]S_{\overline{ABC}}=\sqrt{13}+\frac{\sqrt{26}+\sqrt{146}}{2}[/tex]
[tex]A_{\overline{ABC}}=\sqrt{S_{\overline{ABC}}(S_{\overline{ABC}}-\overline{AB})(S_{\overline{ABC}}-\overline{BC})(S_{\overline{ABC}}-\overline{CA})}[/tex]
[tex]A_{\overline{ABC}}=\sqrt{(\sqrt{13}+\frac{\sqrt{26}+\sqrt{146}}{2})[ (\sqrt{13}+\frac{\sqrt{26}+\sqrt{146}}{2})-\sqrt{26}][(\sqrt{13}+\frac{\sqrt{26}+\sqrt{146}}{2})-2\sqrt{13}}][(\sqrt{13}+\frac{\sqrt{26}+\sqrt{146}}{2})-\sqrt{146}]}[/tex]
[tex]A_{\overline{ABC}}=7[/tex]