Jawaban:
17
Penjelasan dengan langkah-langkah:
[tex]( {8}^{7} \times {8}^{ - 6} ) + ( {9}^{0} \times {9}^{ - 5} \times {81}^{3} ) \\ ({8}^{7 + ( - 6)} ) + ( {9}^{0 + ( - 5)} \times { ({9}^{2}) }^{3} \\ = ( {8}^{1} ) + ( {9}^{ - 5} \times {9}^{6} \\ = 8 + ( {9}^{ - 5 + 6} ) \\ = 8 + {9}^{1} \\ = 17[/tex]
..
[tex]\begin{gathered} \begin{array}{ | c | c| c | } \hline\ \ \text{No}& \text{bentuk}& \text{penyederhanaan} \\ \hline 1 & a {}^{m} \times a {}^{n} &a {}^{(m + n)} \\ \hline 2 & (a {}^{m} ) {}^{n} &a {}^{(m \times n)} \\ \hline 3 & a {}^{n} \times {b}^{n} &(ab) {}^{n} \\ \hline 4 & a {}^{n} \div {b}^{n} &( \frac{a}{b} ) {}^{n} \\ \hline 5 & \frac{a {}^{m} }{ {a}^{n} } &a {}^{(m - n)} \\ \hline 6 & a {}^{0} &1 \: (a≠0) \\ \hline 7 & a {}^{ - n} & \frac{1}{a {}^{n} } \\ \hline 8 & a {}^{ \frac{m}{n} } & \sqrt[n]{a {}^{m} } \\ \hline 9 & ( \frac{a}{b}) {}^{ - n} & (\frac{b}{a} ) {}^{n} \\ \hline 10 & ( \frac{a}{b} ) {}^{n} & \frac{a {}^{n} }{ {b}^{n} } \\ \hline \end{array}\end{gathered}[/tex]
[tex]\begin{aligned} ( {8}^{7} \times {8}^{ - 6} ) + ( {9}^{0} \times {9}^{ - 5} \times {81}^{3} ) &= {8}^{(7 - 6)} + ( {9}^{ - 5} \times ( {9}^{2} )^{3} ) \\&= 8 + ( {9}^{ - 5} \times {9}^{6} ) \\&= 8 + {9}^{( - 5 + 6)} \\& = 8 + 9 \\& = \boxed{\bold{\underline{17}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{Selamat Menunaikan Ibadah Puasa}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 17 - 04 - 2023}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
17
Penjelasan dengan langkah-langkah:
[tex]( {8}^{7} \times {8}^{ - 6} ) + ( {9}^{0} \times {9}^{ - 5} \times {81}^{3} ) \\ ({8}^{7 + ( - 6)} ) + ( {9}^{0 + ( - 5)} \times { ({9}^{2}) }^{3} \\ = ( {8}^{1} ) + ( {9}^{ - 5} \times {9}^{6} \\ = 8 + ( {9}^{ - 5 + 6} ) \\ = 8 + {9}^{1} \\ = 17[/tex]
semoga bermanfaat
Eksponen
..
[tex]\begin{gathered} \begin{array}{ | c | c| c | } \hline\ \ \text{No}& \text{bentuk}& \text{penyederhanaan} \\ \hline 1 & a {}^{m} \times a {}^{n} &a {}^{(m + n)} \\ \hline 2 & (a {}^{m} ) {}^{n} &a {}^{(m \times n)} \\ \hline 3 & a {}^{n} \times {b}^{n} &(ab) {}^{n} \\ \hline 4 & a {}^{n} \div {b}^{n} &( \frac{a}{b} ) {}^{n} \\ \hline 5 & \frac{a {}^{m} }{ {a}^{n} } &a {}^{(m - n)} \\ \hline 6 & a {}^{0} &1 \: (a≠0) \\ \hline 7 & a {}^{ - n} & \frac{1}{a {}^{n} } \\ \hline 8 & a {}^{ \frac{m}{n} } & \sqrt[n]{a {}^{m} } \\ \hline 9 & ( \frac{a}{b}) {}^{ - n} & (\frac{b}{a} ) {}^{n} \\ \hline 10 & ( \frac{a}{b} ) {}^{n} & \frac{a {}^{n} }{ {b}^{n} } \\ \hline \end{array}\end{gathered}[/tex]
Penyelesaian Soal
[tex]\begin{aligned} ( {8}^{7} \times {8}^{ - 6} ) + ( {9}^{0} \times {9}^{ - 5} \times {81}^{3} ) &= {8}^{(7 - 6)} + ( {9}^{ - 5} \times ( {9}^{2} )^{3} ) \\&= 8 + ( {9}^{ - 5} \times {9}^{6} ) \\&= 8 + {9}^{( - 5 + 6)} \\& = 8 + 9 \\& = \boxed{\bold{\underline{17}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{Selamat Menunaikan Ibadah Puasa}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 17 - 04 - 2023}}[/tex]