Respuesta:
4. Dos bloques están en contacto sobre una mesa como muestra la figura. Si se le aplica una fuerza
constante: 1) horizontal y 2) formando un ángulo de 30° con la horizontal, despreciando el
rozamiento calcular:
a) La aceleración que adquiere el sistema
cada caso.
b) La fuerza de interacción entre ambos cuerpos.
DATOS: F= 20 N; m1 = 2 kg y m2 = 3 kg
a) Cálculo de la aceleración
Para calcular la aceleración del sistema, trataremos a los dos cuerpos como uno solo, cuya masa
total es = ଵ + ଶ. Para cada caso plantearemos los ejes coordenados y dibujaremos el
diagrama de cuerpo libre.
Teniendo en cuenta las fuerzas que actúan sobre cada eje, podemos plantear:
Caso 1: Fuerza aplicada horizontal:
Teniendo en cuenta que el cuerpo no se
∑ ௬ = − = 0 (1)
∑ ௫ = = (2)
De la ecuación para x obtenemos:
ி
= ⇒ =
ி భାమ =
ଶ
ଶାଷ
⇒
Caso 2: Fuerza aplicada con ángulo de 30°
∑ ௬ = − − 30 = 0
∑ ௫ = 30 = (4)
ி௦ଷ
ி௦ଷ భାమ =
ଶே௦ଷ
ଶାଷ
Notar que este es un caso donde la normal no es igual al peso.
b) Cálculo de la fuerza de interacción entre los cuerpos
Veamos ahora lo que sucede sobre uno de los cuerpos que compone el sistema, en particular, el
cuerpo 1:
Dos bloques están en contacto sobre una mesa como muestra la figura. Si se le aplica una fuerza
a) La aceleración que adquiere el sistema en
= 3 kg
a caso plantearemos los ejes coordenados y dibujaremos el
Teniendo en cuenta que el cuerpo no se acelera en el eje y, pero si en el eje x, = 4
௦మ
con ángulo de 30° con la horizontal:
(3)
ଷ
⇒ ≅ 3,46
caso donde la normal no es igual al peso.
Cálculo de la fuerza de interacción entre los cuerpos
sobre uno de los cuerpos que compone el sistema, en particular, el
Explicación:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
4. Dos bloques están en contacto sobre una mesa como muestra la figura. Si se le aplica una fuerza
constante: 1) horizontal y 2) formando un ángulo de 30° con la horizontal, despreciando el
rozamiento calcular:
a) La aceleración que adquiere el sistema
cada caso.
b) La fuerza de interacción entre ambos cuerpos.
DATOS: F= 20 N; m1 = 2 kg y m2 = 3 kg
a) Cálculo de la aceleración
Para calcular la aceleración del sistema, trataremos a los dos cuerpos como uno solo, cuya masa
total es = ଵ + ଶ. Para cada caso plantearemos los ejes coordenados y dibujaremos el
diagrama de cuerpo libre.
Teniendo en cuenta las fuerzas que actúan sobre cada eje, podemos plantear:
Caso 1: Fuerza aplicada horizontal:
Teniendo en cuenta que el cuerpo no se
∑ ௬ = − = 0 (1)
∑ ௫ = = (2)
De la ecuación para x obtenemos:
ி
= ⇒ =
ி భାమ =
ଶ
ଶାଷ
⇒
Caso 2: Fuerza aplicada con ángulo de 30°
∑ ௬ = − − 30 = 0
∑ ௫ = 30 = (4)
De la ecuación para x obtenemos:
ி௦ଷ
= ⇒ =
ி௦ଷ భାమ =
ଶே௦ଷ
ଶାଷ
Notar que este es un caso donde la normal no es igual al peso.
b) Cálculo de la fuerza de interacción entre los cuerpos
Veamos ahora lo que sucede sobre uno de los cuerpos que compone el sistema, en particular, el
cuerpo 1:
Dos bloques están en contacto sobre una mesa como muestra la figura. Si se le aplica una fuerza
constante: 1) horizontal y 2) formando un ángulo de 30° con la horizontal, despreciando el
a) La aceleración que adquiere el sistema en
b) La fuerza de interacción entre ambos cuerpos.
= 3 kg
Para calcular la aceleración del sistema, trataremos a los dos cuerpos como uno solo, cuya masa
a caso plantearemos los ejes coordenados y dibujaremos el
Teniendo en cuenta las fuerzas que actúan sobre cada eje, podemos plantear:
Teniendo en cuenta que el cuerpo no se acelera en el eje y, pero si en el eje x, = 4
௦మ
con ángulo de 30° con la horizontal:
(3)
ଷ
⇒ ≅ 3,46
௦మ
caso donde la normal no es igual al peso.
Cálculo de la fuerza de interacción entre los cuerpos
sobre uno de los cuerpos que compone el sistema, en particular, el
Explicación: