Un cuerpo se deja caer desde lo alto de un edificio y tarda 4 segundos en llegar al suelo. Considerar despreciable la resistencia del aire y g= -9.8 m/s2. ¿Cuál es la altura del edificio?
En la caída libre un objeto cae verticalmente desde cierta altura H
Se trata de un movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV)en el que la aceleración coincide con el valor dela gravedad. Con aceleración constante hacia abajo, debida al efecto de la gravedad
Donde la velocidad cambia continuamente, dado que el proyectil acelera en su descenso. Y se constata que el cambio de velocidad es el mismo en cada intervalo de tiempo, por ser la aceleración constante
Estableciendo un sistema de referencia donde el eje de coordenadas es vertical, dado que el cuerpo siempre se encuentra sobre el eje Y
Donde no presenta el proyectil velocidad inicial [tex](\bold { V_{y} = 0 ) }[/tex] dado que parte del reposo, luego esa velocidad se va incrementando a medida que el proyectil desciende.
Inicialmente su posición es [tex]\bold {y_{0} = H }[/tex]
La altura del edificio es de 78.4 metros
Se trata de un problema de caída libre
En la caída libre un objeto cae verticalmente desde cierta altura H
Se trata de un movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV) en el que la aceleración coincide con el valor de la gravedad. Con aceleración constante hacia abajo, debida al efecto de la gravedad
Donde la velocidad cambia continuamente, dado que el proyectil acelera en su descenso. Y se constata que el cambio de velocidad es el mismo en cada intervalo de tiempo, por ser la aceleración constante
Estableciendo un sistema de referencia donde el eje de coordenadas es vertical, dado que el cuerpo siempre se encuentra sobre el eje Y
Donde no presenta el proyectil velocidad inicial [tex](\bold { V_{y} = 0 ) }[/tex] dado que parte del reposo, luego esa velocidad se va incrementando a medida que el proyectil desciende.
Inicialmente su posición es [tex]\bold {y_{0} = H }[/tex]
Las ecuaciones son
[tex]\boxed {\bold { y ={y_{0} +V_{0y} \ . \ t + \frac{1}{2} \ . \ a_{y} \ . \ t^{2} }}}[/tex]
[tex]\boxed {\bold { {V_{y} =V_{0y} +a_{y} \ . \ t }}}[/tex]
Dado que
[tex]\boxed {\bold { y_{0}= H }}[/tex]
[tex]\boxed {\bold { a_{y}= g }}[/tex]
Podemos reescribir como:
Posición
[tex]\boxed {\bold { y ={H + \frac{1}{2} \ . \ g \ . \ t^{2} }}}[/tex]
Velocidad
[tex]\boxed {\bold { {V_{y} =g . \ t }}}[/tex]
[tex]\textsf{Donde } \ \ \ \bold a_{y} =g[/tex]
Solución
Tomamos como valor de gravedad 9.8 m/seg² por imposición de enunciado
Calculamos la altura del edificio
Como en el eje Y se tiene un MRUV empleamos la siguiente ecuación
[tex]\boxed {\bold { y =H - \frac{1}{2} \ . \ g \ . \ t^{2} }}[/tex]
[tex]\bold{y = 0}[/tex]
[tex]\boxed {\bold { 0=H - \frac{1}{2} \ . \ g \ . \ t^{2} }}[/tex]
[tex]\large\boxed {\bold { H = \frac{ g \ . \ t^{2} }{2} }}[/tex]
[tex]\boxed {\bold { H = \frac{ 9.8 \ \frac{m}{s^{2} } \ . \ (4 \ s)^{2} }{2} }}[/tex]
[tex]\boxed {\bold { H = \frac{ 9.8 \ \frac{m}{\not s^{2} } \ . \ 16 \not s^{2} }{2} }}[/tex]
[tex]\boxed {\bold { H = \frac{ 9.8 \ . \ 16 \ }{2} metros }}[/tex]
[tex]\boxed {\bold { H = \frac{ 156.80}{2} \ metros }}[/tex]
[tex]\large\boxed {\bold { H = 78.4 \ metros }}[/tex]
La altura del edificio es de 78.4 metros
Aunque el enunciado no lo pida:
Hallamos la velocidad con que el cuerpo llega al suelo
Tomamos el tiempo de 4 segundos
[tex]\boxed {\bold { {V_{y} =g . \ t }}}[/tex]
[tex]\boxed {\bold { {V_{y} =9.8 \ \frac{m}{s^{\not2} } \ . \ 4 \not s }}}[/tex]
[tex]\large\boxed {\bold { {V_{y} =39.2 \ \frac{m}{s} }}}[/tex]
La velocidad con que el cuerpo llega al suelo es de 39.2 metros por segundo (m/s)